

Development of CMOS Pixel Sensor prototype for the high-rate CEPC vertex detector

Ying Zhang (IHEP)

On behalf of the CEPC MOST2 Vertex detector design team

Outline

- Project introduction and TaichuPix chip overview
- Small scale prototypes design and test results
- Full scale prototype design
- Summary

Circular Electron Positron Collider (CEPC) proposed as a Higgs factory.

- Efficient tagging of heavy quarks (b/c) and τ leptons
 - → Impact parameter resolution,

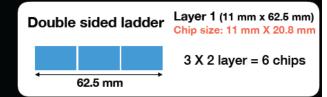
$$\sigma_{r\emptyset} = 5 \oplus \frac{10}{(p \cdot \sin^{3/2}\theta)} \; (\mu m)$$

Physics driven requirements	Running constraints	Sensor specifications	
σ _{s.p.} - 2.8 μm Material budget - 0.15% X ₀ /layer r of Inner most layer - 16 mm	> Air cooling	 Thinning to 50 μm low power 50 mW/cm² fast readout ~1 μs 	
Baseline design parameters for C	≤6.2×10 ¹² n _{eq} / (cm ² year)		

	$R (\mathrm{mm})$	z (mm)	$ \cos\theta $	$\sigma(\mu{\rm m})$
Layer 1	16	62.5	0.97	2.8
Layer 2	18	62.5	0.96	6
Layer 3	37	125.0	0.96	4
Layer 4	39	125.0	0.95	4
Layer 5	58	125.0	0.91	4
Layer 6	60	125.0	0.90	4

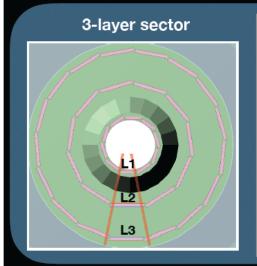
Ref: CEPC Conceptual Design Report, Volume II - Physics & Detector, http://cepc.ihep.ac.cn/

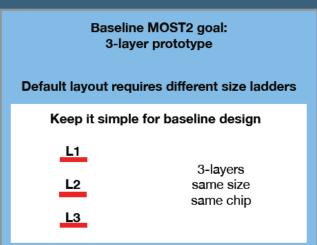
MOST2 project requirements on pixel chip



Silicon Vertex Detector Prototype - MOST (2018-2023)

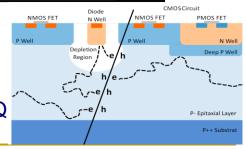
Sensor technology CMOS TowerJazz


- ◆ Design sensor with large area and high resolution
- + Integration of front-end electronic on sensor chip



Benefit from MOST 1 research program

Ref: Introduction to the Pixel MOST2 Project, Joao Costa, 2018.6



Integrate electronics readout

Design and produce light and rigid support structures

Motivation for TaichuPix chip design

- Large-scale & full functionality pixel chip
- > Fit to be assembled on ladders with backend Elec. & DAQ

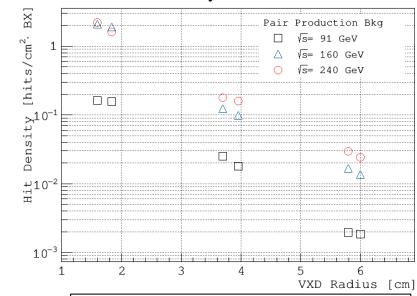
Main specs of the full scale chip for high rate vertex detector

Bunch spacing

Higgs: 680 ns; W: 210 ns; Z: 25 ns

Max. bunch rate: 40 M/s

Hit density

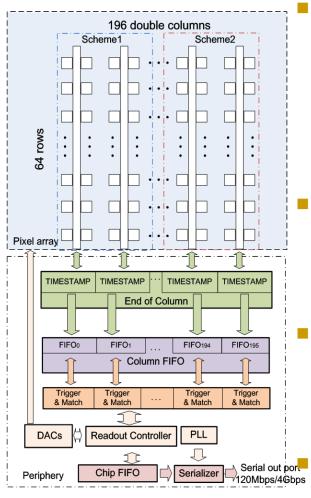

2.5 hits/bunch/cm² for Higgs/W; 0.2 hits/bunch/cm² for Z

Cluster size: ~3 pixels/hit

Epi-layer thickness: ~18 μm

Pixel size: 25 μm × 25 μm

Hit Density vs. VXD Radius



Ref: CEPC Conceptual Design Report, Volume II

For Vertex	Specs	For High rate Vertex	Specs.	For Ladder Prototype	Specs.
Pixel pitch	≤ 25 µm	Hit rate	120 MHz/chip	Pixel array	512 row x 1024 col
TID	>1 Mrad	Date rate	3.84 Gbpstriggerless ~110 Mbpstrigger	Power Density	< 200 mW/cm ² (air cooling)
		Dead time	< 500 ns for 98% efficiency	Chip size	~1.4 cm×2.56 cm

TaichuPix architecture

Similar to the ATLAS ITK readout architecture: "column-drain" readout

- Priority based data driven readout, zero-suppression intrinsically
- Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
- Dead time: 2 clk for each pixel (50 ns @40 MHz clk)

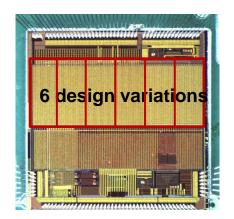
Two parallel pixel digital schemes

- ALPIDE-like: Readout speed was enhanced for 40 MHz BX
- FE-I3-like: Fully customized layout of digital cells and address decoder for smaller area

2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface

Trigger readout

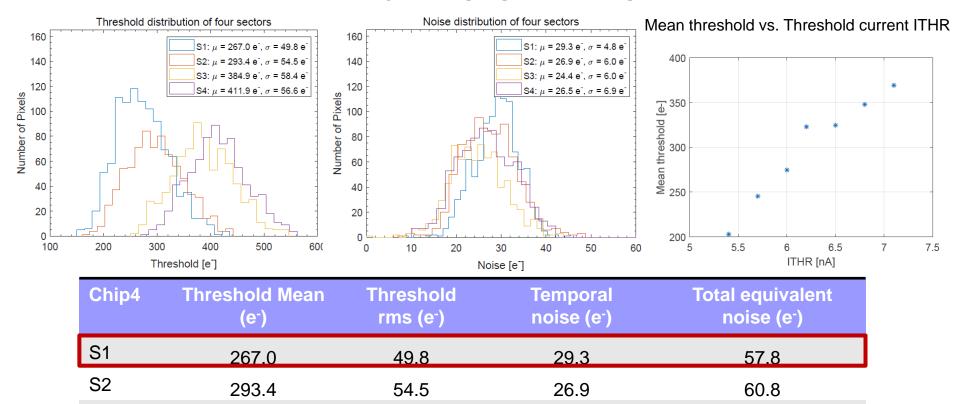

- Make the data rate in a reasonable range
- Data coincidence by time stamp, only matched event will be readout

TaichuPix small prototypes overview

TaichuPix-1 Chip size: $5 \text{ mm} \times 5 \text{ mm}$ Pixel size: $25 \mu\text{m} \times 25 \mu\text{m}$

TaichuPix-2 Chip size: $5 \text{ mm} \times 5 \text{ mm}$ Pixel size: $25 \mu\text{m} \times 25 \mu\text{m}$

Two MPW chips were fabricated and verified


- TaichuPix-1: 2019.06~2019.11
- TaichuPix-2: 2020.02~2020.06

Chip size 5 mm×5 mm with standalone features

- > In-pixel circuitry:
 - Continuously active front-end
 - Two digital schemes, with masking & testing config. logics
- A full functional pixel array (64×192 pixels)
- Periphery logics
 - Fully integrated logics for the data-driven readout
 - Fully digital control of the chip configuration
- Auxiliary blocks for standalone operation
 - High speed data interface up to 4 Gbps
 - On-chip bias generation
 - Power management with LDOs
 - IO placement in the final ladder manner
 - Multiple chip interconnection features included

Performance of threshold and noise of TaichuPix2

- CEPC
- Pixel array includes 4 sectors with different transistor parameters/layout for analog front-end, S1 chosen for the full-scale design.
- Threshold can be tuned by changing 'ITHR' (a global current bias)

24.4

26.5

58.4

56.6

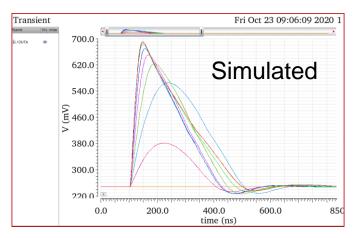
384 9

411.9

S3

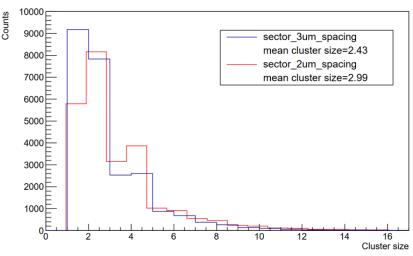
S4

63.3


62.5

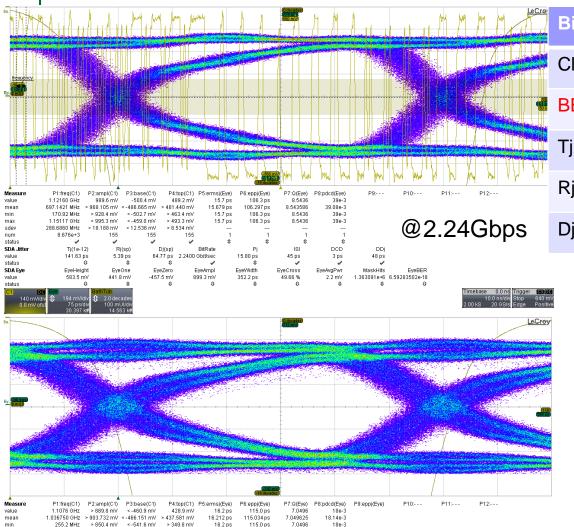
TaichuPix response to radioactive source

Functionality of TaichuPix1&2 proved



TaichuPix2 response to X-ray tube (cutting energy @ 6keV)

TaichuPix1 response to 90Sr exposure


Cluster Distribution

TaichuPix1 cluster size to 90Sr exposure

Test of the data interface

1.8142 GHz

14.389e+3

447.550 MHz

SDA Jitte

> 979.1 mV

< -421.1 mV

< 20.392 mV

> 483.3 mV

> 14.592 mV

3.3600 Gbit/sec

54.26 ps

EyeZero

-431.1 mV

115.0 ps

EyeCross

50.01 %

18e-3

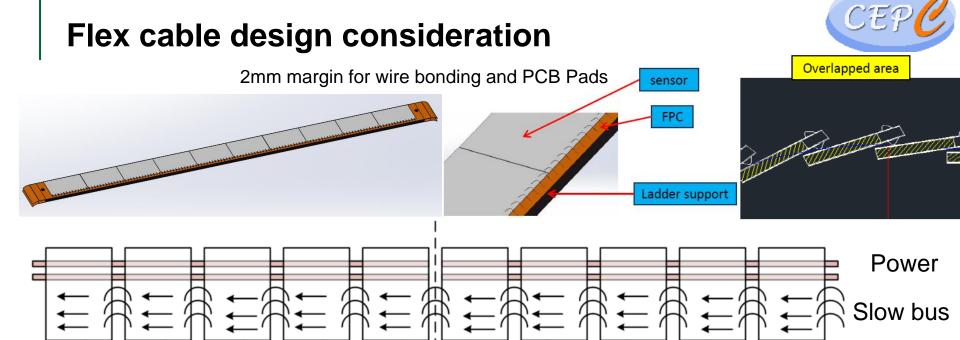
-11.4 mV

51 ps

MaskHits EyeBER 1.524591e+6 914.388622e-15


@3.36Gbps

Bit rate	2.24Gbps	3.36Gbps	4.48Gbps
Clk freq	1.12GHz	1.68GHz	2.24GHz
BER	6.59e-18	9.14e-13	3.23e-5
Tj@e-12	141.63ps	123.27ps	147.14ps
Rj	5.39ps	4.84ps	5.35ps
Dj	64.77ps	54.26ps	70.90ps


- Data readout in DDR mode
- Data interface was tested by the onchip PRBS source, a high speed oscilloscope (@16Gsps), and code stream verified in FPGA
- BER qualified till 3.36 Gbps, failed at 4.48 Gbps
- Concerning the highest data rate for triggerless at 4 Gbps, at least 2 SER interface ports needed
- Thus bit rate @2.24 Gbps is safe and power optimized

Overview of the full scale prototype

- Pixel array 1024*512
- 2. Periphery
- 3. DAC & Bias generation
- Data interface
- 5. LDO (test blocks)
- 6. Chip interconnection features
- 7. Scribe-able top power connection features
- Process: 180 nm CMOS Imaging Sensor process (7 metal layers)
- Pixel cell copied exactly from MPW + scaled logic with new layout
 Periphery + debugged/improved blocks + enhanced power network

Design goals & considerations for the Flex PCB

- Minimum material budget
 - Minimum dead zone extension, limited height of PCB
 - Minimum set of signals on Flex
 - □ Inter-chip connection for slow controls through wire bonding → save some space & metal on PCB
 - Robust power supply
- Manufacturability

Signals

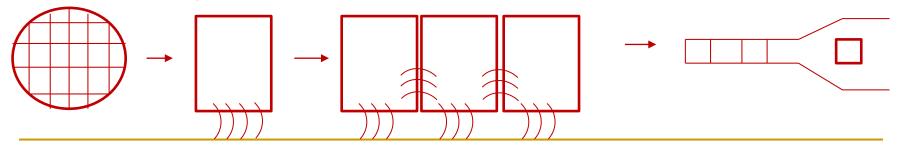
Testability design & test plan consideration

- All test features reserved, while the connection IOs will be reduced at different stages depending on chip test & study results
 - Analog probe signals at the top part, accessible from the top pads
 - When mounted on ladder, only minimum self test possibilities can be reserved

1. Probe Card design for the wafer test

For all the pads at both sides

2. Single chip test board design


Designed with all the test features for the chip functional study

3. Multiple chip test board for the ladder debugging

- Designed following the same manner as the ladder but on PCB
- Signals and power supplies will be limited just with the ladder's dimension
- > Extra test signals can be connected to the extended area, to help debugging

4. The real flex cable design for the ladder

Core design and lessons will be exported from 3

Summary

Small scale TaichuPix chips were developed to perform initial R&D

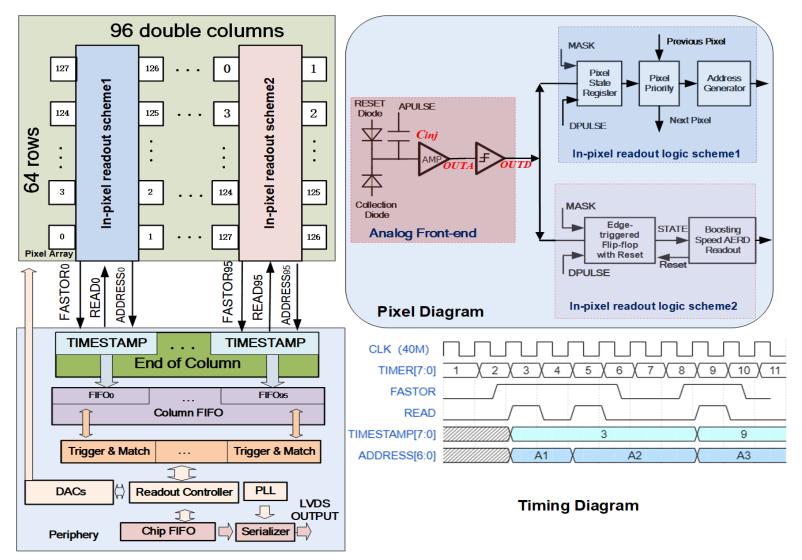
- Pixel pitch 25 μm, readout time 50 ns/pixel
- Full signal chain & functionality verified with both electrical & radioactive test

The first full scale prototype have been designed

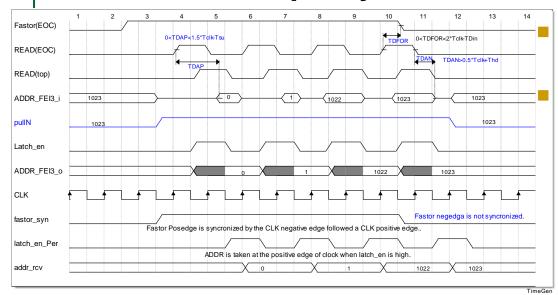
Chip size is 25.7 mm × 15.9 mm, will be submitted for engineering run soon

Recent plan

- More tests on TaichuPix2 chip
- Preparation for the full scale chip test (probe card, test PCB, flex cable ...)


Thank you very much for your attention!

Backup

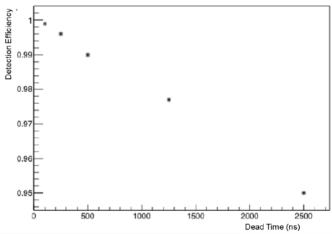

Chip diagram and timing

Readout & Periphery

Time stamp recorded when 'fastor' is valid

Each pixel readout by 2 clocks (50 ns)

- ♥ Worst delay ~ 25ns
 - > Sim by 512 rows (full scale)
 - > TDA: read sent –addr come
- ♦ Address latch @ 37.5ns
 - @ 1.5 clock
 - Enough headroom for all corners


Designed for low power

- Only the hit (fastor) info & address fannout from the pixel array
- Only the read (acquisition) signal is fanned in to the pixel array
 - Clock & time stamp are localized only in the EOC, different from FE-I3

Optimized @ highest hit rate

- Common time stamp recorded for a full double column
 - For low power
 - Column is hit every 8.3us / pixel is readout in 2 clocks (50ns) / cluster size 3 pixels
 - Dead time 500ns 98% trigger efficiency

Detection efficiency vs. Dead time

