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Dose Delivery System

A correct dose distribution needs a precise 
monitoring of the beam parameters:

fluence, position, shape, energy 
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Modelling and Verification for Ion beam Treatment planning 

Development of two prototypes of innovative detectors based on silicon (UFSDs) for 
beam monitoring:

1. to directly count individual protons

2. to measure the beam energy with time-of-flight techniques

INFN project



Ultra Fast Silicon Detectors (UFSD)

Based on the Low Gain Avalanche Diode (LGAD) techonology

• Thin p+ gain layer implanted under the n++ cathode

Controlled low gain (~ 10-30)

Gain increases with bias voltage

High Signal/Noise ratio

• Small thickness of active volume 50 µm

Reduced beam perturbation, signal steepness

Loss of signal due to reduced thickness compensanted by the
internal gain

Short signal duration (< 2 ns)                                             
→ particle counting

Excellent time resolution (tens of ps)
→ beam energy measurement from time-of-flight
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Synchrotron Cyclotron
FWHM  3 - 7 mm
Flux 106 - 1010 p/s
Current 1 - 320 nA

Energy 68 - 228 MeV 

FWHM  10 mm
Flux 108 - 109 p/s in spills
Intensity 20 - 50 - 100%

Energy 62 - 227 MeV 
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Particle Counting
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Counting Prototypes and Readout
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Dead time → ~ 10 ns

Counting accuracy at 1%

110 nm CMOS technology

Chip area = 2 × 5 mm2

24 channels

CSA dynamic range: 4 - 150 fC
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Dead time → ~ 10 ns
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110 nm CMOS technology

Chip area = 2 × 5 mm2

24 channels

CSA dynamic range: 4 - 150 fC
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FPGA
- FE inizialization
- Pulse counting
- Pileup correction



Threshold scans with 4 different proton beam energies (70 MeV, 125 MeV, 179 MeV, 228 MeV

Tests with the ABACUS testboard at 
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Tests with the ABACUS testboard at 
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Tests with the ABACUS testboard at 

𝟏/𝜷𝟐

energies used
in therapy

60 MeV – 230 MeV
30 mm – 320 mm
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Pile-up inefficiency
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Particle Counting
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MoVeIT
Correction method based on the 
correlation of logical pulses from two
neighbouring strips (paralyzable model 
of saturation effects assumed)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Local beam flux [GHz/cm2]

Mitigation of saturation effects

PTW pinpoint I.C. Strip sensor

BEAM

Particle rate estimated using the charge
measured with a PTW pin-hole ionization
chamber and assuming a paralyzable
saturation model.



⚫ Strip segmentation (strip area ~ 3 mm2) 
⚫ Area 2.7 ⨉ 2.7 cm2

⚫ 146 strips (144 with gain, 2 no gain)

Final Counting Sensor Prototypes
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Energy Measurement



Determine the energy through measurements of time-of-flight of coincident protons

UFSD 
sensor 1

UFSD 
sensor 2
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velocity energy range

Energy Measurement Telescope

Required tolerance on the range uncertainty in water < 1mm, i.e. precision < 4 ps needed at 230 MeV at 1 m distance
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11 strips, 
pitch 590 μm 
50 μm active thickness
(thinned down to a total
thickness of 70 μm)6.5 mm

4
 m

m

Dedicated
readout board
for time 
measurement

8 channels
dedicated board

8 channels
dedicated board

Digitizer 5 GS/s

Beam

sensor 1 sensor 2

d

Optical link         
80 MB/s

Timing Prototypes and Readout



time window 
of 10 ns 

Time-of-Flight (TOF) measurement - Coincidences
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constant fraction algorithm to 
reduce the time walk effect

𝒕𝟏

Δt= 𝒕𝟏- 𝒕𝟐

threshold

𝒕𝟐

Time-of-Flight (TOF) measurement - Coincidences
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➢ Double gaussian fit to identify the peak of true coincidences from the combinatorial background 

182.8 MeV @ 400 mm181.68 MeV @ 400 mm

Distribution of Dt
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Δt = 2.5353 ± 0.0009 ns
σ(Δt) = 0.0857 ns
N = 61064

Δt = 2.3109 ± 0.0004 ns
σ(Δt) = 0.0649 ns
N = 66710

182.8 MeV @ 400 mm181.68 MeV @ 400 mm

Distribution of Dt

➢ Double gaussian fit to identify the peak of true coincidences from the combinatorial background 

➢ time resolution for single crossing ∼40 ps < σ < ∼65 ps 24



Interpolation of the measured time difference as a function of the distance with 𝑲𝟎 and 𝒕𝒊𝒎𝒆 𝒐𝒇𝒇𝒔𝒆𝒕 as parameters

A calibration is needed to remove the systematic errors due to the experimental setup

Energy measurement from TOF
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Preliminary Results

26



Conclusions
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➢ Excellent time resolution: real-time measurement of the beam energy
➢ Short signal duration: single particle counting

UFSD are a promising technology for beam qualification and monitoring in
Particle Therapy

Radiobiological 
experiments

Aiming at clinics!Radiation hardness

Patent for energy measurement prototype

Final readout electronics for counting prototype
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Thank you


