

Upstream MLC Leaf Position Detection in Complex Radiotherapy Fields

Jordan Pritchard^[1], Jaap Velthuis^[1,2,3], Lana Beck^[1], Yutong Li^[1], Chiara De Sio^[1], Richard Hugtenburg^[1,2,4]

University of Bristol, School of Physics[1] Swansea University Medical School[2] University of South China, School of Nuclear Science and Technology[3] Swansea Bay University Health Board[4]

Radiotherapy

- Radiotherapy uses MeV photons to target cancerous tissues within a patient
- Aim is to kill cancerous tissues and spare healthy tissue being irradiated

Radiotherapy treatment suite

MLC & IMRT

- MLC consists of two banks of tungsten 'leaves' which move independently of each other
- Delivers IMRT treatments which are static or dynamic
- LINAC gantry rotates 360° around patient
- Treatment beam is delivered from multiple angles
- Beam is collimated so it conforms to cancerous tissue volume & shields healthy tissue from being irradiated
- Treatment precision is dependent on MLC precision

MLC with single leaf extended into field

MLC & IMRT

- MLC consists of two banks of tungsten 'leaves' which move independently of each other
- Delivers IMRT treatments which are static or dynamic
- LINAC gantry rotates 360° around patient
- Treatment beam is delivered from multiple angles
- Beam is collimated so it conforms to cancerous tissue volume & shields healthy tissue from being irradiated
- Treatment precision is dependent on MLC precision

IMRT treatment plan

Treatment Verification & QA

- Standard MLC position calibration uses radiographic film or EPID
- Best resolution of radiographic film and EPID is \sim 500 μ m
- Calibration standard set as ± 1 mm for MLC edges (TG-142)
- Treatment verification is performed pre/post treatment
- Normally, manual calibration of MLC leaf position occurs monthly

MLC tungsten leaves

Consequences of Uncertainty

- Advanced therapies such as IMRT use small, complex treatment fields
- Systematic MLC offsets of \pm 1 mm can alter total prescribed dose by $2 - 4\%$ for such treatments
- MLC position uncertainty can create localised over/under exposures of radiation in the patient
- MLC positions should be calibrated to \pm 300 µm to keep dose error below 2% for complex treatments

13 September 2021

MAPS

- Place a 2x2 array of Lassena Monolithic Active Pixel Sensor (MAPS) upstream of patient in LINAC head
- MAPS are imaging sensors used in smart phones
- Can be made very thin O(100 µm)
	- Beam attenuation therefore < 1%
	- Minimise scatter

Lassena MAPS placed upstream

Lassena

- Lassena is a CMOS with 3T pixel architecture
- 50 µm pixel pitch
- Lassena is 12×14.5 $cm²$
- Wire bonds on 1 side only
- 2x2 configuration covers full treatment field
- Readout rate of 34 frames per second (fps)

Lassena MAPS situated on metal support frame. Note: support frame not used in practice.

Edge Detection

- Treatment beam is collimated by MLC leaves
- Open field produces high signal
- Shielded regions of field produces low signal
- Cross section of treatment field can be observed

Schematic of experimental setup

Single Leaf Edge Detection

- Previously published results for a single central MLC leaf extended into a square treatment field using Lassena as a proof of principle
- Resolution values range from 60.6 ± 8 to 109 ± 12 µm using 0.3 s of treatment data

IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 3, MAY 2021 392 High-Resolution MLC Leaf Position Measurements With a Large Area MAPS

J. L. Pritchard[®], J. J. Velthuis[®], L. Beck[®], C. De Sio[®], and R. P. Hugtenburg[®]

Setup & Raw Data Processing

- Lassena placed on LINAC couch
- 6 MeV square treatment field selected
- MLC leaves extended into treatment field
- Apply pedestal correction
- Bad pixel mask applied to correct bad pixels
- Gaussian smoothing applied to reduce pixel-to-pixel variation

Data Smoothing

- Gaussian smoothing reduces high frequency pixel-to-pixel variation
- Need to find leaf edge, defined as the point of maximum gradient

Edge Detection

- Sobel operators are standard image processing filters
- These act as differential operators to identify image gradients
- Leaf edge is therefore identified by gradient
- Project along pixel row \rightarrow Apply Gaussian fit \rightarrow Extract fit mean \rightarrow Repeat for each pixel row that intersects leaf edge

Leaf Edge Reconstruction & **Results**

- Plot Gaussian means as a function of pixel row number to reconstruct leaf edge
- Make 2nd order polynomial fit and extract turning point as leaf edge position
- Resolution is defined as the Standard Deviation of the Gaussian Fit

Resolution and Accuracy

- Resolution values range from 60.6 ± 8 to 109 ± 12 µm using 0.3 s of treatment data
- Correspondence is excellent and positions can be accurately predicted
- Much better than the 300 µm requirement

E Ve University of

Complex MLC Positions

- Works well for single leaves, but need to investigate more complex MLC leaf positions as in clinical use
- Leaves positioned: close to MLC bank, extended, retracted, off-centre, adjacent and opposing
- Different scattering of electrons and photons incident on Lassena, potentially changing position and resolution measurements
- Place Lassena on LINAC couch, 6 MeV, 12x14 cm field, extend MLC leaves into field, record data frames at 34 fps

Resolution Results

- Resolution values range from 78 ± 7 to 149 ± 14 µm (When excluding outlier)
- Again, much better than the 300 µm requirement
- Only uses 0.15 s of treatment data which is half that used for single leaf data

Accuracy Results

- Results are sufficiently accurate for current current clinical use
- Maximum deviations from predicted fit are ∼ 500 µm

EX University of

• However, our target is < 300 µm

Scattering Effects

- Reconstructing single and adjacent leaves requires a different fitting routine to get position due to leaf scatter
- The correct positions are reconstructed for single and adjacent leaves, however an offset is observed for adjacent leaves
- This effect has been observed prior to image processing and reported in the literature

Scattering Effects

- Comparing single and adjacent leaf extensions allows us to see this effect
- Three single leaves at same extension give the same reconstructed position within error
- Adjacent leaves at same extension should also give the same reconstructed position
	- Single leaves = 42.2 ± 0.129 mm
	- Adjacent leaves = 41.8 ± 0.160 mm
- Offset ∼ 400 µm

Scattering Effects

- Again, deviation between single an adjacent leaves is observed
- Repeating for multiple data sets again shows an offset for single and adjacent leaves
- Single & Adjacent leaf offsets:
	- $503 \pm 16.9 \,\text{\mu m}$
	- $469 \pm 17.7 \,\mu m$
- Single leaf pair offset:
	- 241 μ m \pm 16.0 μ m
- This effect is understood and can be corrected for

Conclusion

- We are developing an upstream live treatment monitoring device
- Lassena MAPS covers full treatment field, has low attenuation (< 1%), readout of 34 fps & is radiation hard
- Resolution values of MLC edge detection ranges from 78 \pm 7 to 149 \pm 14 µm for complex fields
- Systematic offset has been observed for adjacent leaves. This is understood and can be corrected for, this will achieve the \leq 300 µm target
- This can be done in real time as it only require 0.15 s of treatment data and can be implemented in a Field-Programmable Gate Array (FPGA), hence real time treatment verification can be achieved
- This is a working solution which can be used in clinical practice and we are close to a commercial prototype

Thank you