OVERVIEW OF CNM LGADS RESULTS WITH B, Ga AND C DIFFUSED Si-on-Si AND EPITAXIAL WAFERS

<u>C. Grieco</u>, L. Castillo García, S. Grinstein IFAE Barcelona V. Gkougkousis CERN G. Pellegrini, J. Villegas, S. Hidalgo, A. Doblas CNM Barcelona

12th International Conference on POSITION SENSITIVE DETECTORS Hosted by

00

UNIVERSITY^{of} BIRMINGHAM

Motivation and outline

Low Gain Avalanche Diodes (LGADs) sensors

- Developed at CNM to explore improvements towards radiation hardness
- Proposed for timing applications (30ps achieved before irradiation)
- $\,\circ\,$ Interest to study LGAD performances at high fluences beyond $\,10^{15}\,n_{eq}/cm^2$
 - Performances remain challenging due to degradation of gain layer
 - Different doping material investigated: **B**, **B+C**, **Ga**
- ATLAS and CMS experiments have chosen the LGAD technology for their High Granularity Timing Detector (HGTD) and for the End-Cap Timing Layer (ETL)
 See more about HGTD on S. Mazza talk later today!
 - Requirements: at least 4fC and 50ps/track time resolution for fluences from $1.5 \times 10^{15} n_{eq}/cm^2$ (at maximum 600V)

Results will be presented for different technologies of CNM LGADs:
 Si-on-Si and low resistivity epitaxial wafers

- Beta source measurements
- Transient current tecnique (TCT) measurements

Beta source measurements: Setup

Transient Current Tecnique

Setup

- Red ($\lambda = 640nm$) and InfraRed ($\lambda = 1064nm$) lasers
- Room temperature and cold measurements (till -20°C)
- Cooling system with Peltier + Chiller
- Sensor mounted in metal box on a movable stage
- Setup can be controlled remotely (HV on the sensors, stage movements)

Measurements with IR laser

- Only LGADs sensors with opening in the metalization layer
- Gain measurements vs irradiation for single pads
- IP gap vs irradiation for 2x2 arrays

More infos here

CNM Run 10478 B, B+C doping

- 50 µm active layer, Si-on-Si wafer
- W4 B: $V_{gl} \sim 38V$, $V_{fd} \sim 42V$, $V_{bd} \sim 130V$
- W5 B+C: $V_{gl} \sim 38V$, $V_{fd} \sim 42V$, $V_{bd} \sim 110 140V$
- Expected gain higher than 20

Unirradiated devices

Room temperature Run 10478 Wafer 4

CNM Run 10924 Ga Doping

- 50 µm active layer, Si-on-Si wafer
- Gallium doping
- Dose 6e13 at/cm2

Wafer	Thickness (µm)	Dose (at/cm ²)	Energy (keV)
6	50	6E13	195

B, B+C and Ga results: Performances with ⁹⁰Sr

Collected charge

Auto triggering

 $T=-30^{\circ}C$

- Rate of self pulses is studied without external source, this limits the operability of the sensors and is fundamental to define optimal operational points for data taking
- B+C sensors seems to start auto-triggering before than B and Ga sensors
- Neutron iradiaton damages the gain layer less than proton one

- C sensors have larger charge collection than B ad Ga at same bias voltage
- C helps to reduce the effect of gain reduction with irradiation
- Although B+C sensors start autotriggering earlier in voltage than other doping
 - This make them not operable at higher voltages

Time resolution

- Bias Voltage [V]
 Achieved time resolution better than 50 ps
- B and B+C are similar in time performances
- Ga achieves a worse time resolution due to the high leakage current

More studies on B, B+C and Ga in these slides

Ga direction looks like to be not worth due to poor performances, B+C seems more stable but require better diffusion tecniques

B and Ga results: TCT measurements

- \circ Measurements for B and Ga doped LGADs up to $1\times 10^{15}n_{eq}/cm^2$
 - p and n irradiation
 - B+C sensors metalized on the back
- Gain is computed as: $G = \frac{Q_{DUT}}{\langle Q_{pin} \rangle}$ for each bias

voltage

- Q_{DUT} is the collected charge obtained by the integration of waveform signal on the DUT
- < Q_{pin} > is the PIN averaged collected charge (device with no multiplication)
 O Boron sensors show more gain than Gallium ones
 - at same bias voltages, in agreement with beta source results

 $T = -20^{\circ}C$

More infos <u>here</u>

Unirradiated devices

80

100

Room temperature

60

Reverse Bias (V)

40

2019

CNM AIDA 2020 Run 12916

- 4 wafers
- 50 µm active layer, Si-on-Si wafers
- $V_{gl} \sim 38V$, $V_{fd} \sim 42V$, $V_{bd} \sim 85V$ at room temperature

Wafer	Thickness (µm)	Dose (at/cm ²)	Energy (keV)
1-4	50	1,8E13	100

10-4

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

10⁻⁹

10⁻¹⁰

10-11

10⁻¹²

3

Current

DB28
DB32

← DB33 ← DB34

----- DB37

— DB39

----- DB35

----- DB38

20

Pin

AIDA 2020 results: Performances with ⁹⁰Sr

Auto triggering

- Unirradiated sensor present a high autotriggering rate at low voltage which brings difficulty in operating it at cold temperature
- Only marginal performances can be achieved before irradiation

Collected charge

- Unirradiated sensor results are biased by the high auto-triggering rate
 - Not enough room to operate the sensor at -30°C
- 2,5e15 n irradiated sensors provide
 4fC for bias voltage higher than 680V

Time resolution

- Unirradiated sensor cannot be operate at higher voltage due to auto-triggering, marginal performances in timing
- Irradiated sensors present a time resolution lower than 40 ps at all level of neutron irradiation

Unirradiated devices do not have enough room to operate at cold temperature due to early breakdown

AIDA 2020 results: IP gap

- IP gap defined as distances between multiplication layers
- Measurements:
 - X-Y scan in the middle of two pads (1000wfm per point)
 - Pad A and B read through two different readout lines
 - 2D map drawn for each of the pads, charge on colour axis
 - Projection fit with (reverse) error function
 - X position corresponding at half of the height taken for IP gap calculation

 $T=-20^{\circ}C$

- $\circ IP_{gap} = |x_{A50\%} x_{B50\%}|$
- Unirradiated sensor not operable
 - High current and early beakdown
- At low fluences:
 - Carries generated underneath the gain layer, drift on JTE and don't have multiplication
- At high fluences (higher than 6e14n):
 - Some gain from carries drifting to the JTE, a smaller IP has been measured at low bias voltages
 - The gap is larger at higer bias voltages
- Results are compatible with previous <u>ones</u> and confirmed by simulation

Run 13002: 6-inch LGAD in Epitaxial Wafers

Epitaxial run results: Performance with ⁹⁰Sr

All the fluences present enough room 0 to operate between V_{al} and V_{bd}

- Not detectable auto triggering up to 770V for fluence of 1e15n and up to 720V for fluence of 1e16n but high current, no possible to go higher in voltage
- Up to 1e14 n irradiated sensors a high collected charge (>10 fC) is achieved
- For 1e15 n irradiated sensor 4 fC are \bigcirc reached at HV>700V
- No detectable gain for 1e16n up to 720V 0
- Foreseen tests of intermediate fluences \bigcirc (5e14n, 8e14n, 2e15n, 3e15n and 5e15n)

A time resolution < 50 ps is achieved for 0 sensor irradiated up to 1e15n

400

500

600

200

100

300

Time resolution

100 c

90Ē

80

70 È

60

40

30

20 E

10E

σ [ps]

- A plateau-like around 43ps is reached for this fluence
- For 1e14n the measured time resolution is \bigcirc below 40 ps

Unirradiated devices have enough room to operate, but irradiated ones works at relative high bias

Chiara Grieco – The 12th International Conference on Position Sensitive Detectors - University of Birmingham

Unirrad

🗕 1e14n

1e15n

Epitaxial run results: Gain and Time resolution

 $T = -20^{\circ}C$

• Gain is computed as: $G = \frac{Q_{DUT}}{\langle Q_{pin} \rangle}$ for each bias voltage point

- Q_{DUT} is the collected charge obtained by the integration of waveform signal on the DUT
- $< Q_{pin} >$ is the averaged collected charge obtained for the device with no multiplication (PIN)
- G = 1 = 0.569 fC (*MIP* $\rightarrow 67 e/h pairs per \mu m$ in silicon low doped $\times 53 \mu m$)

- Same signal delayed of 50 ns
- Time resolution of the sensor coputed as $\sigma_{DUT} = \frac{\sigma_{fit}}{\sqrt{2}}$
- Time difference is calculated at all CFD fractions
- 1000 waveforms for each voltage point
- Minimum time resolution plotted here

Results aready presented to <u>RD50 community</u>

Conclusions and outlook

Boron, Boron + Carbon and Gallium dopings (Run 10478 W4 & W5, Run 10924 W6)

- **Carbon** seems to help more to maintain gain after irradiation
 - However in this first run with Carbon it was diffused in all substrate and benefits are not clear (as from results from other)
 - Even though need a god control of the C implant in the gain layer
- Gallium presents 20% less gain and acceptor removal wrt Boron, but requires better diffusion techniques
 - Direction not worth since the poorer radiation hardness and timing performances
- Sensors have been also tested in test beams (2018-2019) and a paper with results is in preparation

AIDA 2020 Boron (Run 12916)

- Un-irradiated sensor does not show enough room to operate between V_{gl} , V_{fd} and V_{bd} voltages and early breakdown
- Good performances in collected charge and time resolution achieved for fluences up to 2,5e15 n

Epitaxial Boron (Run 13002)

- Un-irradiated sensors show enough room to operate between V_{gl} , V_{fd} and V_{bd} voltages and low auto-triggering rate
- 1e15 n irradiated sensors work but at relative high bias (700V), this is due to too low resistivity

Next

- A new common ATLAS/CMS run will be ready by the end of this year
 - Epitaxial run with C infusion on some wafers

BACKUP

Low Gain Avalanche Detectors (LGADs)

Pioneered by Centro Nacional de Microelectrónica (CNM)

- n-on-p silicon detector with extra doped p-layer beow the n-p junction which provides signal amplification
 - High E field
 - Internal gain: \sim 10-50 (large S/N ratio)
 - Typical rise time: $\sim 0.5 0.8$ ns
 - Time resolution before irradiation < 30 ps
 - $50 \ \mu m$ thick sensors \rightarrow faster rise time and lower impact from radiation
- Different doping material investigated: *B*, *B*+*C*, *Ga*
- Different manufacturers: CNM, HPK, FBK, BNL and IHEP-NDL
- Interest to study LGAD performance at high fluences beyond $10^{15} n_{eq}/cm^2$
- ATLAS and CMS experiments have chosen the LGAD technology for their High Granularity Timing Detector (HGTD) and for the End-Cap Timing Layer (ETL)
 - CMS : 10fC at 1.5.1015 /cm² at (max) 600V
 - ATLAS : 4fC at 2.5·1015 /cm² at (max) 600V
 - Results will be presented for different technologies of CNM LGADs both Si-on-Si and low resistivity epitaxial wafer
 - Beta source measurements for single pad sensor
 - Interpad gap distances on 2x2 LGAD arrays with transient current tecnique and gain for single pad sensors

Low voltage power supply control panel

- Different type of power supplies implemented
- Connected through Ethernet
- LV power of boards
- LV power on second stage amplifiers

Climate chamber control panel

- Connected through Ethernet
- Remote setting of temperature

Dry air needed to be put 'by hand'

📴 Timming Setup Configuration	_ 🗆 🗵
🖶 🖶 🕘 🗉	?
High Voltage Temp & Low Voltage Control Oscilloscope Scans Waveform Preview	
Low Valtaga powar supply Robis % Super HMD404	Quick Reference
Low vortage power suppry konde & swartz himpitot	Single Channel Boad
Rohde & Swartz	2nd stage
Remote Mode Remote Mix Com Port % Hameg4040	amplifier
Channel 1 Channel 2 Channel 3 Channel 4 OutputOn OverValt OutputOn OverValt OutputOn OverValt	Compliance ->
סא	Low Voltage ->
OFF OFF OFF OFF OFF OFF OFF	Overvolt prt>
Voltage Out Voltage Out Voltage Out Voltage Out	13V Amplifier Gian of 10
Current Limit Current Limit Current Limit	
	1st stage amplifier
Overvolt. Protect Overvolt. Protect Overvolt. Protect	4 Channel Boad
	- No second stage
Channel 1 Channel 2 Channel 3 Channel 4 CH1 🕘 CH3 🕘	amplifier neded
	Compliance ->
Current 0.000 A 0.000 A 0.000 A	Low Voltage -> 5V
Plimate Chamber Votech V(T4002	
Computing fine Reportance 30.0 - Temperature	- No second stage
ID Advage 172 16 15 254	amplifier neded
Prote 20/0	Compliance
	Low Voltage ->12V
	Overvolt prt>13V
40 Error (-20.0 -	
Temperature ²⁰ Actual Set Point of Temperature ^{-30.0}	
4210 °C -20 − 201 °C - 400	Created by: Vagelin
-40- 1899897 2899897	Gkougkousis, 2019
Time	

- High voltage power supply panel
- High voltage for sensors
- GPIB connection through USB to PC
- Several instruments implemented
- Voltage and current monitoring
- IV will be saved in txt file

Oscilloscope control panel

- Several instruments implemented
- Connected through Ethernet
- Possibility to act on all the scope functions (trigger pattern, edge etc...)

Automated data taking

- Scans panel: Voltage scans
- Setting desired temperature points for data taking
- Setting voltage points per each temperature
- Setting number of events per point
- Saving box for datafile
- Scans panel: Autotriggering
- Setting desired temperature points
- Saving box for datafile
- Number of trigger for each voltage point
- Monitoring for rate vs HV

Timming Setup Configuration	
ا ا ا ا	
High Voltage Temp & Low Voltage Control Oscilloscope S	cans
Temperature	- Voltage Scans
Start Scan Temperatures DUT Voltage V	
Temperatures Dor Voltage (0 0
22,23,25 -40,-50,-60	
Error -40,-50,-60	
Events/Point -40,-50,-60	0 Current Point Progress
()3	
	Calibration Mode
Save to folder	Error Message Recored Even
Autotria	ger Scan
Start Scan	Registered Events
Temperatures -10,-20,-30	500
Folder & C:\Users\Pixels\Deskt	cop\Timing_setup\Tests 5.08 Min
Trig. Per Point Maximum Votlage	Error Message Rate
	.3506E+! Hz
140000	
120000 -	-20 C
100000 -	-30 C
ž 80000-	
50000 -	\sim
40000 -	
2000 -	
0-1 1 1 1 1 1 1 1 -80 -75 -70 -65 -60 -55 -50 -45	-40 -35 -30 -25 -20 -15 -10 -5 0
	Voltage (¥)

TCT setup schematic and readout: Single Pad

- Sensor is biased from the top side with POSITIVE voltage, this is possible due to the presence of the BIAS-T element
 - DC input is used for bias voltage
 - RF output is sent to amplifier and then to the scope
 - RF+DC in/out is used for the connection with the sensor
- Illuminated with IR lased on the backside
- CIVIDEC amplifiers present a gain of 100
- Average of 1000 waveforms are collected from DRS oscilloscope

TCT setup schematic and readout: 2x2 arrays

- Sensor is biased from the top side with POSITIVE voltage, this is possible due to the presence of the BIAS-T element
 - DC input is used for bias voltage
 - RF output is sent to amplifier and then to the scope
 - RF+DC in/out is used for the connection with the sensor
- Illuminated with IR lased on the backside
- CIVIDEC amplifiers present a gain of 100
- Average of 1000 waveforms are collected from DRS oscilloscope

2x2 arrays TCT measurements

- Laser light is hitting Pad A area
- Pad B presents a positive signal due to the discarging of the capacitor
 - This will give a negative charge value once waveform is integrated
- More info in this study: <u>https://www.sciencedirect.com/science/article/pii/S0168900220308913</u>

Electrical characterization at -30 C AIDA 12916

- Tests performed on a set of single pads
 (1.3x1.3 mm²) from W1
- IV measurements at $T = -30^{\circ}C$ before and after neutron irradiation in JSI
- Applied positive Bias Voltage to Pad and GR, back of the sensor grounded
- Compliance set at $5\mu A$ for both Pad and GR
- The plot shows total current

 $I_{tot} = I_{GR} + I_{PAD}$

• All the sensors are working after

irradiation

Name	Fluence
DB02	Unirrad
DB07	Unirrad
DB01	1e14 n
DB08	1e14 n
DB04	6e14 n
DB05	6e14 n
DB06	1e15 n
DB03	1e15 n
DB28	2,5e15 n
DB33	2.5e15 n

Waveform analysis: LGADUtils framework

 Waveform processing performed with LGADUtils framework (C++ based) developed at IFAE by V. Gkougkousis (<u>documentation</u>, <u>gitlab</u>)

•Working with Root v5-v6, different operating system

OSteps

- Conversion oscilloscope binary data to Root ntuple with raw waveform information
- Merging with track ntuple from EUTelescope
- Waveform analysis
 - Determination of pulse polarity, signal start and stop, determine if the pulse is noise or signal
 - Calculate noise level and pedestal using Gauss fit, pedestal substraction, recalculation of start and stop of the signal
 - Compute charge, rise time, time at different CFD fractions...
 - Perform CFD Time Walk correction
- User analysis
 - Efficiency
 - Timing

Noise and Pedestal calculation

Waveform analysis: collected charge

- Charge of the signal is obtained from waveform integration between start and stop
- Values from integral fill charge distribution (plot on the right)
- Each distribution is fitted with a convolution of Landau with Gauss function
- Charge for HV value is the MPV of the fit, sigma is its error

Waveform analysis: collected charge

- Time differences is computed for each CFD fraction combination between DUT and reference sensors $\Delta t = t(DUT(f_{CFD})) - t(REF(f_{CFD}))$
- The time difference distribution is fitted with a Gaussian with the time resolution of the system defined as the σ of the Gaussian
- Time resolution of the DUT is obtained by subtracting the contribution of the reference sensor

$$\sigma_{DUT} = \sqrt{\sigma_{fit}^2 - \sigma_{REF}^2}$$

• Where $\sigma_{REF} \sim 35 ps$ is known from previous calibration measurements

Timing contributions

- Landau term < 25 ps
 Reduce for thin sensors 35 50μm
- Jitter term < 15 ps and time walk correction < 10 ps
 Low noise and fast signals
- \circ Digitization granularity ~ 5 ps
- \circ Clock distribution < 10 ps

- Time walk correction for test beam data using the Costant Fraction Discriminator (CFD) technique
 - Time at a fraction of 50% of amplitude

Auto-triggering voltage vs fluence

Bias voltage at which auto-triggering rate goes over 1kHz wrt fluence

Time resolution Vs collected charge

- All the fluences present enough room to operate between V_{gl} and V_{bd}
- Not detectaboe auto triggering up to 770V for fluence of 1e15n and up to 720V for fluence of1e16n but high current, no possible to go higher in voltage

- Up to 1e14 n irradiated sensors a high collected charge (>10 fC) is achieved
- For 1e15 n irradiated sensor 4 fC are reached at HV>700V
- No detectable gain for 1e16n up to 720V
- Foreseen tests of intermediate fluences
 (5e14n, 8e14n, 2e15n, 3e15n and 5e15n)

 A time resolution < 50 ps is achieved for sensor irradiated up to 1e15n

15

20

25

10

EPI

100

90

80

70

60

50 E

40

30

20 E

10 F

0^t

σ [ps]

- A plateau-like around 43ps is reached for this fluence
- For 1e14n the measured time resolution is below 40 ps

Unirradiated devices have enough room to operate, but irradiated ones works at relative high bias

Chiara Grieco – The 12th International Conference on Position Sensitive Detectors - University of Birmingham

🗕 1e14n

30 Collected Charge [

1e15n

Run 13840: 6" ATLAS-CMS Common Run (6LG3)

1x1, 2x2, 5x5 & 16x16 mm² devices

- 9 LGAD + 1 PiN wafers.
- Some of them carbonated
- 6-inch 55/525 µm epitaxial wafers.
 - Handle wafer resistivity = 0.001-1 Ohm-cm
 - Substrate resistivity > 200 Ohm-cm
- Same technological process as Run 13002 : 6LG3
- New diffusion furnace → Higher diffusion processes quality and uniformity
- It will be terminated by : forth quarter of 2021
- Waiting to define optimal dose and implantation E

