Timepix4 timestamping detector for synchrotron applications

David Pennicard, Jonathan Correa, Sergei Fridman, Sabine Lange, Sergej Smoljanin, Vahagn Vardanyan, Heinz Graafsma – DESY Xavier Llopart, Jerome Alozy, Michael Campbell - CERN

Position Sensitive Detectors 12, Birmingham, Sept 2021

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Introduction

- > Timepix4 for synchrotron X-ray experiments
- > Chip design and testing at CERN
- System development at DESY

Timepix4

- Developed by CERN, Nikhef and IFAE for Medipix4 collaboration
 - 15 member institutes
- > 65 nm TSMC process (previously 130 nm GF)
- First chips received April 2020
- > Timestamping and hit counting modes of operation

55 µm pixel size 512 x 448 pixels

Timestamping mode with event-by-event readout

- > Time of arrival with **200 ps** time binning (1.6 ns in Timepix3)
- > Time over threshold with ~ 1 keV resolution
- > Hit rate bandwidth **350 million hits/s/cm²** (8 times higher than Timepix3)

Hit counting mode with frame readout

- Single threshold
- > Count rate capability **2 million counts/pix/s** at 10% pileup (10 times higher than Medipix3)
- > Up to **80 kHz** frame rate (20 times higher than Medipix3)

Using both readout modes at one synchrotron beamline

- Diffraction with coherent X-rays produces speckle pattern from non-crystalline object
 - Encodes positions of atoms

Using both readout modes at one synchrotron beamline

- > Large static sample (e.g. nanostructured materials):
 - Hit counting mode
 - Take images while moving sample
 - Determine nanoscale structure across large sample

Using both readout modes at one synchrotron beamline

- > Dynamic sample (e.g. proteins in solution):
 - Timestamping mode
 - Speckle pattern fluctuates over time
 - Deduce dynamics from correlations in signal

Introduction

- Timepix4 for synchrotron X-ray experiments
- > Chip design and testing at CERN
- System development at DESY

4-side buttable design with Through Silicon Vias

David Pennicard | Timepix4 timestamping detector for synchrotron applications | PSD12, Birmingham, Sept 2021 | Page 10

High-speed readout

- > High-speed transmitter from Nikhef (successor of transmitter used in Velopix)
- > 16 transmitters running up to 10.24 Gbit/s
 - Can be configured to 5.12, 2.56, 1.28... GBit/s

"Eye diagram" with transmitter at 5.12 Gbit/s

Test results from CERN

Tested with Si sensor and Nikhef "Spidr4" readout

Timepix4v1 with 1 448x512 sensor

X-ray image from frame mode

Test results from CERN

- Tested with Si sensor and Nikhef "Spidr4" readout
- Most functionality works well, time resolution meets specs (~ 150 ps RMS)

Timepix4v1 with 1 448x512 sensor

Chip revisions

- Timepix4v0 (Apr 2020)
 - Noisy pixels over "periphery" due to interference
 - 640 MHz Voltage controlled oscillators have too high frequency
 - High-speed readout requires special operating conditions
- Timepix4v1 revision (Oct 2020)
 - Shielding improves noisy pixel behaviour
- > Timepix4v2 revision (expected back from foundry soon)
 - VCO behaviour fixed
 - Revised VCO design has been tested in MPW

Timepix4v0 pixel noise

Chip revisions

- Timepix4v0 (Apr 2020)
 - Noisy pixels over "periphery" due to interference
 - 640 MHz Voltage controlled oscillators have too high frequency
 - High-speed readout requires special operating conditions
- Timepix4v1 revision (Oct 2020)
 - Shielding improves noisy pixel behaviour
- Timepix4v2 revision (expected back from foundry soon)
 - VCO behaviour fixed
 - Revised VCO design has been tested in MPW

Timepix4v1(changed metal layer)

Introduction

- > Timepix4 for synchrotron X-ray experiments
- > Chip design and testing at CERN
- > System development at DESY

DESY single chip prototype

- Single-chip Timepix4 board connected to off-the-shelf Xilinx board
 - Zynq Ultrascale+ with FPGA fabric and 4-core CPU
- Parallel readout of 16 high-speed links from chip
 - Using specialized transceivers on Zynq
- Daughterboard offering 2 x 100 GBE links over "Firefly" optical cable

Testing single-chip board

- Control and monitoring of the chip through control interface
 - Problems with image taking, related to board powering
- Data transfer tested from Xilinx board to PC using UDP
 - ~70 Gbit/s rate demonstrated using Mellanox accelerator library
 - 2 x 40 Gbit links are sufficient for reading 16 transceivers at 5 Gbit/s
- > Next steps:
 - Revise chipboard design to improve powering
 - Test high-speed transceivers using revised Timepix4v2 chip

Multi-chip, multi-module systems

- Many X-ray experiments require a large continuous detector
- > Tileable building block: 3-chip module
- Readout board with Zynq Ultrascale+ SoC
 - 3 x 100 GBE readout
- > Ultimate goal TSVs to eliminate wire bonds
 - Medipix4 collaboration already arranged TSV run with Fraunhofer IZM

3-chip detector head 1344 x 512 pixels

3 x 100 GBE cages

Conclusions

- > Timepix4 offers both improved time stamping and hit counting modes
- > Timepix4's versatility makes it appealing for synchrotron applications
- Most features of the chip work as expected, and Timepix4v2 is expected soon
- > Development of readout systems is underway, with large tiled systems planned

