Development of Compton-PET hybrid imaging system with CeBr₃-SiPM arrays

*Mizuki Uenomachi¹, Kenji Shimazoe², Kei Kamada³, Tadashi Orita², Miwako Takahashi⁴, Hiroyuki Takahashi² ¹RIKEN, ²The University of Tokyo, ³Tohoku University, ⁴QST 2021/09/16

Research Background

Nuclear Medicine

One of medical specialty to diagnose and treat disease by injecting a radioactive agent into our body

Conventional imaging modality • PET * and SPECT **

- * Positron emission tomography
- ** Single photon emission computed tomography
- Positron emitter (511keV annihilation gamma-rays) PET
 - Early detection of malignant tumors

¹⁸F-FDG etc..

- SPECT
- Single photon emitters (~400 keV)
- Blood flow, molecular dynamics, antibody imaging

^{99m}Tc (141keV),⁶⁷Ga (300keV), ¹¹¹In (171,245keV) etc...

FDG-PET -> Glucose imaging

SPECT -> Receptor imaging

Malignancy Diagnosis

Molecular Diagnosis

Simultaneous imaging of **PET and SPECT nuclides**

Improvement of diagnostic accuracy Reduction in the number of inspections \rightarrow Reduces the burden on patients

Principle of Compton-PET hybrid camera

New simultaneous multi-nuclide imaging method

Principle of Compton-PET hybrid camera

We proposed new simultaneous PET/SPECT imaging system: **Compton-PET hybrid camera** [1]

- > PET nuclide
 - → Conventional PET imaging (Coincidence between cameras)
- > SPECT nuclide
 - \rightarrow Compton imaging (Coincidence between scatterer and absorber)

Advantages of PET imaging

- High sensitivity
- High spatial resolution: 4-5 mm
- High quantitative imaging

[1] K.Shimazoe et al., NIMA. 954, (2020) 161499

2 Compton cameras (scatterer + absorber) in opposite directions \rightarrow 1 module

Compton-PET hybrid camera with GAGG detectors

- 8 × 8 array HR-GAGG
- Scatterer : 2.5 mm \times 2.5 mm \times 1.5 mm
- Absorber: 2.5 mm \times 2.5 mm \times 9 mm Coupled with 8 × 8 array SiPM (Hamamatsu S-13361-3050N-08)

Data Acquisition (DAQ) system

- 144 ch parallel ToT DAQ
- 400 MHz (Xilinx Kintex7)
- List mode data (Channel, time stamp, ToT width)

[2] K.Shimazoe et al., IEEE trans. On Nuc. Sci. Vol59, No.6, pp3213-3217, (2012)

64 ch signals \rightarrow parallel signal processing with dynamic Time over Threshold (dToT) method[2]

Digitally acquire the energy information as the time width Improved linearity between ToT and energy

Compton-PET hybrid camera with GAGG detectors

Demonstration of simultaneous imaging of PET nuclide (¹⁸F-FDG) and SPECT nuclide (¹¹¹In) [3]

Development of new system with higher time resolution and Evaluation of basic Objective performance

[3] M.Uenomachi et al., "Simultaneous in vivo imaging with PET and SPECT tracers using a Compton-PET hybrid camera", 11.1, Scientific Reports (2021) 1-11

Simultaneous *in vivo* imaging of 18F-FDG and ¹¹¹In anti-body

•Poor time resolution ($\sim 50 \text{ ns}$) \rightarrow Limited mainly in the signal processing circuit

Development of new system with CeBr₃ pixel detectors

CeBr₃ Scintillator

	HR-GAGG	CeBr ₃
Light yield (photon/MeV)	40,000~50,000	~70,000
Decay time (ns)	~400	20
Energy resolution (%)	\leq 5 (APD)	~4 (PMT)
Density (g/cm ³)	~6.3	5.2
Other	 No intrinsic γ-ray background No hygroscopicity 	 Quite-small intrinsic γ-ray background Hygroscopicity

Ref : C&A Home page(https://www.c-and-a.jp/index_jp.html)

CeBr₃ scintillator can achieve both high time resolution and energy resolution

8x8 array pixel CeBr₃

- 3.2 mm pitch
- Thickness:3 mm •
- BaSO₄ reflector •
- Hermetically sealed in an aluminum ulletpackage with a quartz window
- Fabricated by Tohoku Univ. (Japan) •
- Couple with SiPM (Hamamatsu S-• 13361-3050N-08)

Development of new system with CeBr₃ pixel detectors

- - comparing a slew rate limited signal and a constant voltage (LinearityO)

Development of new system with CeBr₃ pixel detectors

New DAQ [4]

- 128 ch parallel ToT DAQ
- Time resolution: 62.5 ps (Old DAQ : 2.5 ns)
- List-mode data

[4] S.Sato et al., "Development of multichannel high time resolution data acquisition system for ToT-ASIC", IEEE Trans. On. Nucl. Sci. (2021)

Energy resolution

Time resolution, PET imaging

Experimental setup

Two 8x8 array CeBr₃ detectors (thickness 3 mm) placed in opposite directions for measurement

Time resolution

- Source: ²²Na point source
- Distance from source to detector: 30 mm
- SiPM bias : 55.0V
- Temperature : 25°C

8x8 CeBr₃ detector (Thickness 3 mm)

Offset depending on the combination of pixels

²²Na

8x8 CeBr₃ detector (Thickness 3 mm)

PET imaging (BP)

Demonstration of Compton imaging

Experimental setup

- 8x8 array CeBr₃ detector (Thickness 3 mm) placed as scatterer and absorber
- Source: ¹³⁷Cs (662 keV)
- Distance from scatterer surface to absorber surface : 40 mm
- Distance from source to camera: 30 mm

Coincidence event

- SiPM bias : 55.0V
- Temperature: 25°C

Compton imaging (MLEM)

Spatial resolution : \sim 3.1 mm (FWHM)

Absorber (Thickness 3 mm) Scatterer(Thickness 3 mm)

ARM

ARM: 10.0 degree (FWHM)

Summary and future works

Development of new imaging system with CeBr₃ pixel detectors

Conventional system: Signal processing circuit of time resolution 50 ns + DAQ of time resolution 2.5 ns \rightarrow New system : Signal processing circuit of time resolution 55 ps + DAQ of time resolution 62.5 ps

- Evaluation of basic performance
 - \succ Energy resolution: Best ~6.0 % @ 662 keV, Mean ~10.1% @ 662 keV \rightarrow Large channel variation
 - Time resolution : 293 ps (FWHM) by correcting offsets between channels
 - Succeeded to conduct PET and Compton imaging

Future works

- \blacktriangleright Development of a prototype Compton-PET hybrid camera with two CeBr₃ Compton cameras
- Demonstration of simultaneous PET and Compton imaging with a prototype system

Thank you for listening