

Compact LumiCal prototype tests for future e⁺e⁻ collider

Veta GHENESCU

Institute of Space Science, Bucharest, ROMANIA

[on behalf of the FCAL Collaboration]

12th International Conference on Position Sensitive Detectors 12 - 17 September 2021, Birmingham, UK

Overview

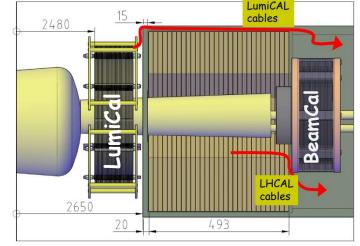
Forward region in LC Experiments

Thin LumiCal module design

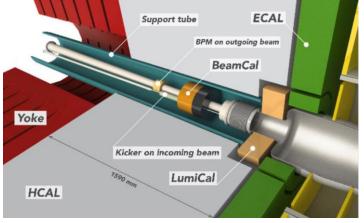
LumiCal prototype performance in beam-test

- Beam-test setup
- Results

Conclusions and Future Steps


Forward region in LC Experiments

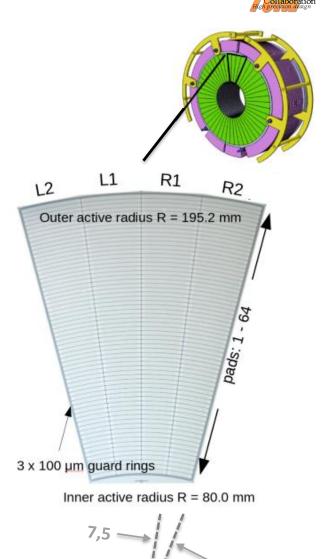
Two specialized calorimeters are foreseen:


- LumiCal precise integrated luminosity;
- BeamCal fast luminosity estimate and beam parameters control;

Both forward calorimeters improve the hermeticity of the main detector at very small polar angles.

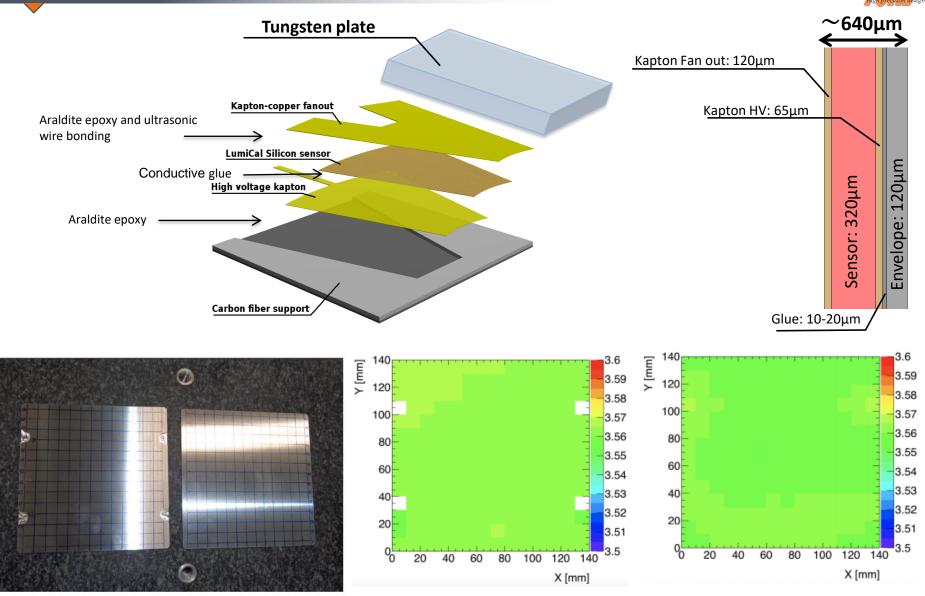
The very forward region of the ILD detector.

	Parameters		ILC (ILD)	CLICdet
LumiCal	geometrical acceptance [mrad]		31 - 77	38 - 110
	fiducial acceptance	[mrad]	41 - 67	44 - 80
	z (start from IP)	[mm]	2480	2539
	number of layers (W + Si)		30	40
BeamCal	geometrical acceptance [mrad]		5 - 40	10 - 40
	z (start from IP)	[mm]	3200	3181
	number of layers (W + sensor)		30	40


The layout of the CLICdet forward region.

Forward region in LC Experiments

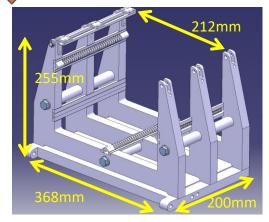
- The LumiCal is a Si-W electromagnetic sandwich calorimeter;
- 30 W absorber layers at ILC (40 at CLIC) interspersed with very thin detector planes;
- It is designed to measure the integrated luminosity with a precision better then 10⁻³ for ILC and 10⁻² for CLIC;

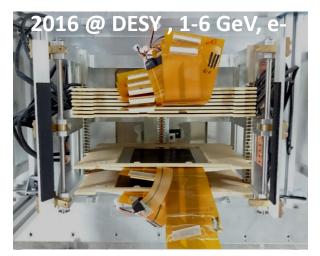

Main features of silicon sensor prototype produced by Hamamatsu:

- 6-inch wafer;
- 320 μm thickness;
- 4 azimuthal sectors in one tile, each 7.5 degrees;
- Radially segmented 64 pads with 1.8 mm pitch;
- 12 tiles make full azimuthal coverage.

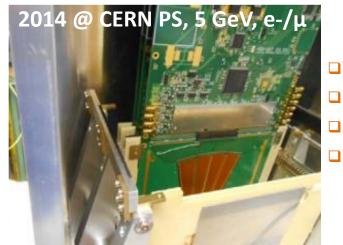
Thin LumiCal Module

Dimensions 140 x 140 x 3.5 mm


Good flatness ~30 µm observed

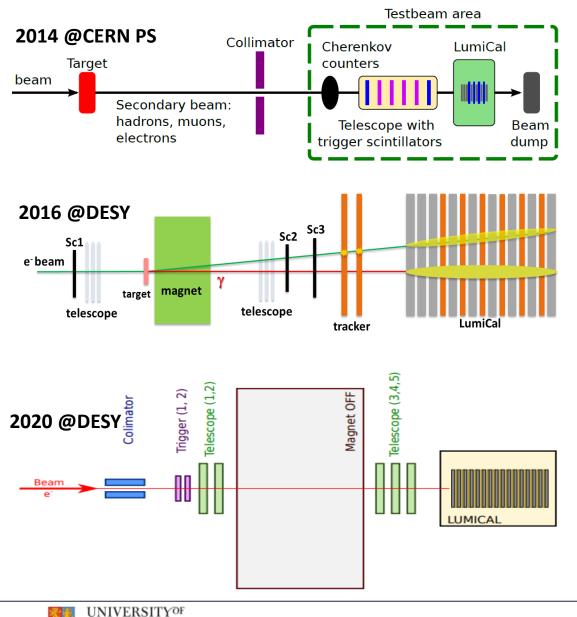


Beam-test campaigns



Mechanical frame for LumiCal detector planes

- 1st LumiCal multi-layer prototype;
- 8 LumiCal detector planes;
- APV25 readout;
- 1 mm between W plates;



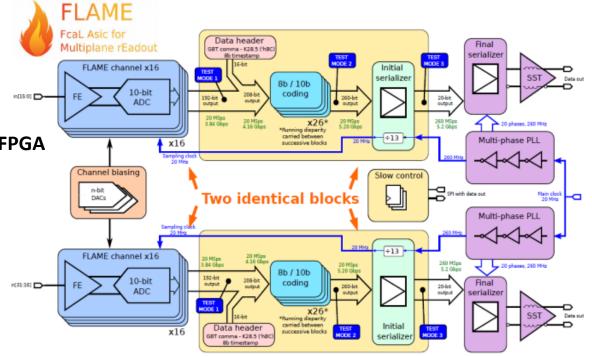
- 4 LumiCal detector planes;
- 4.5 mm between W plates;
- 8-ch. FE&ADC ASICs readout;
 - 3 different configurations.

- 15 LumiCal detector planes;
- FLAME readout;
- APV25 readout;
- 1 mm between W plates;

Goals:

- Tests and demonstration of multi-plane operation of the forward detector prototype;
- Study of the electromagnetic shower in a precise and well known structure and comparison with MC simulations;
- Measurement of Molière radius;
- Study of e-/γ identification using bremsstrahlung;
- Energy and spatial resolution studies;
- Polar angle bias study;

BIRMINGHAM


FLAME - LumiCal new readout

Architecture of FcaL Asic for Multiplane rEadout:

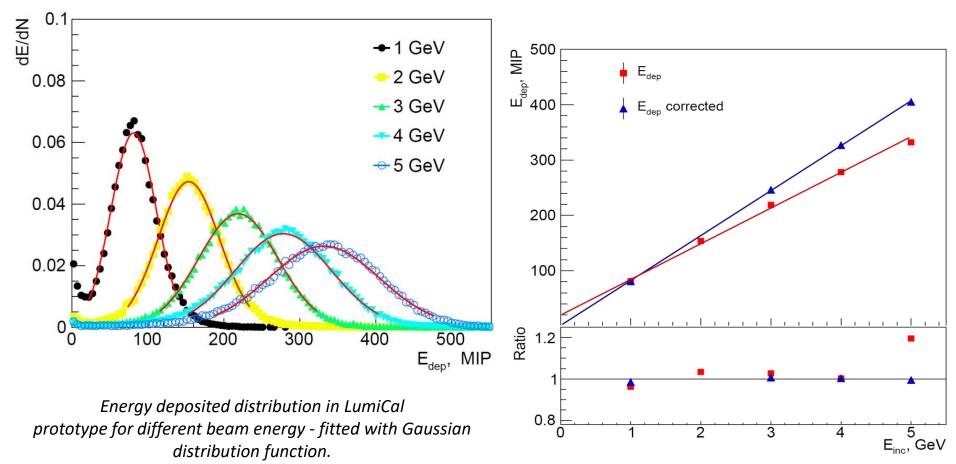
- Designed in CMOS 130nm;
- ✓ 32 mix-mode channels per ASIC;
- ✓ Each channel contains FE+10 bit ADC;
- ✓ Followed by high speed data link.

Data send directly to **Zynq UltraScale FPGA** for online processing:

- pedestal, CM subtraction;
- Pulse detection;
- ✓ Deconvolution;
- ✓ ToA and amplitude reconstruction.

Analog front-end:

- Charge sensitive preamplifier with variable gain from 4fC (1 MIP) up to 6pC;
- Different CR-RC shaper for simple amplitude and time deconvolution;
- Power consumption ~1mW.


10-bit SAR ADC:

- Sampling rate 20MS/s (Max 50MS/s);
- ✓ ENOB > 9.5;
- ✓ DNL, INL < 0.5 LSB;
- Ultra low power consumption (0.5mW/ch @ 20MS/s).

Serializer & driver:

- PLL generates 260MHz clocks from 20 MHz reference (x13);
- ✓ 5.2 Gb/s output data rate.

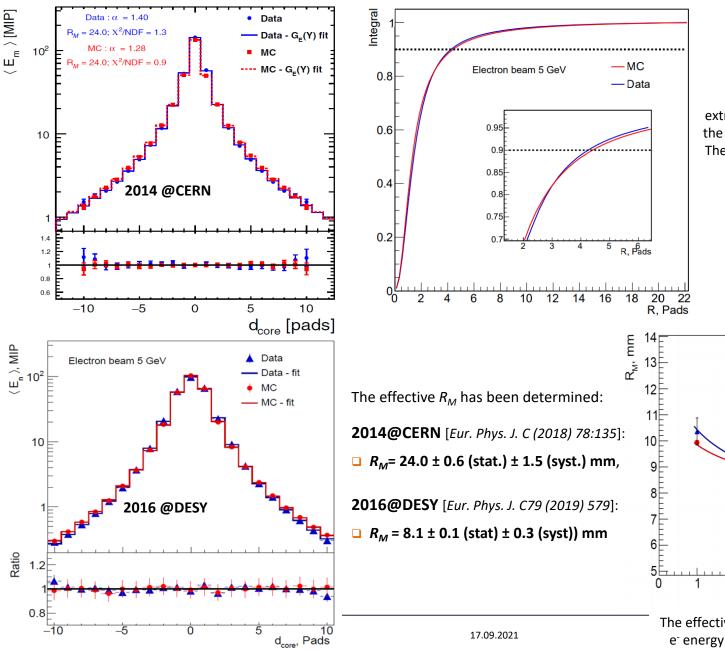
Results – LumiCal energy response

Average total energy deposited in LumiCal prototype as a function of beam energy before (red) and after (blue) APV25 front-end chip calibration. The lower part shows the ratio of the E_{dep} to the straight line.

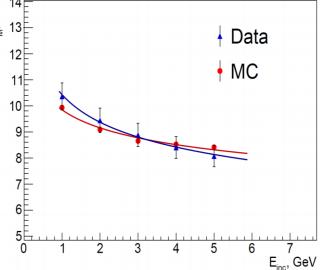
The function used to describe the average transverse energy profile of the shower is:

$$F_{E}(r) = A_{C}e^{-\left(\frac{r}{R_{C}}\right)^{2}} + A_{T}\frac{2r^{\alpha}R_{T}^{2}}{\left(r^{2}+R_{T}^{2}\right)^{2}}$$
(1)

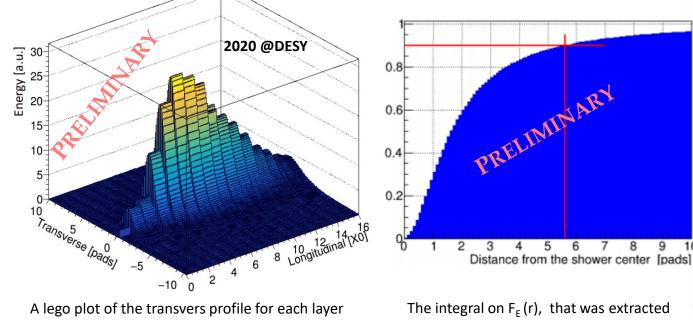
where: *r* is the distance from the shower center; A_C ; A_T ; R_C ; R_T ; α are the fit parameters.


- The fitting range corresponds to the area connected to readout.
- \Box The parameters of $F_{F}(r)$ are fixed by both test-beam data and MC simulation.
- □ The Molière radius, R_M , is a characteristic constant of a stack of materials. By definition, it is the radius of a cylinder with axis coinciding with the shower axis, containing on average 90% of the energy deposition of the shower.
- \Box The Molière radius, R_M , can be found from the equation:

$$0.9 = \int_{0}^{2\pi} d\varphi \int_{0}^{R_{M}} F_{E}(r) r dr$$
 (2)



Results – transverse shower


The integral on $F_{\varepsilon}(r)$, that was extracted from the fit, as a function of the radius, *R*, in units of pads (1,8mm). The insert shows an expanded view of the region 2 < R < 6 pads

The effective Moli`ere radius as a function of the e⁻ energy for data (blue) and simulation (red).

Results – transverse shower

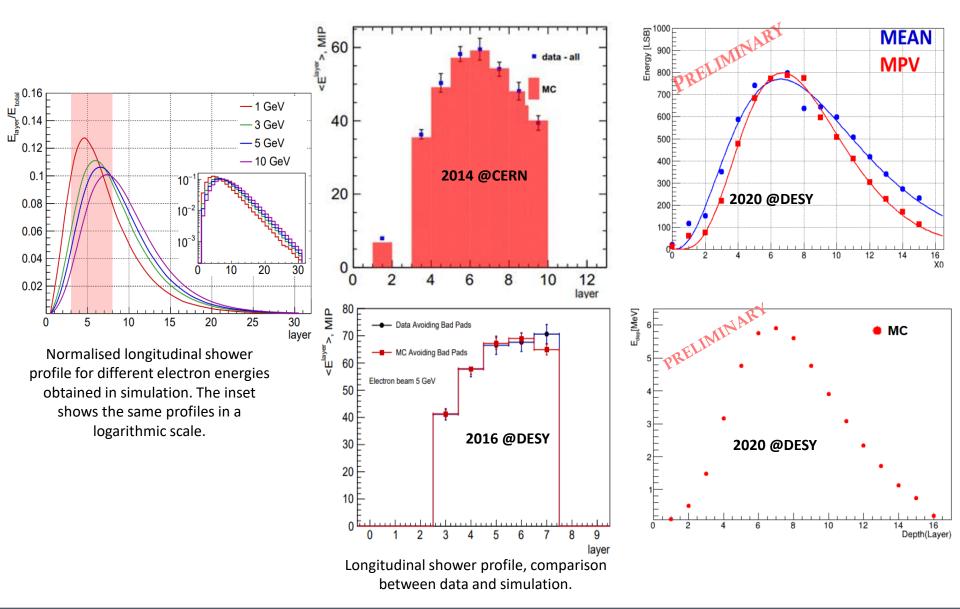
6 configurations has been done to study the shower development in the entire calorimeter using only 3 FLAME boards, the boards were successively connected to the different sensor layers.

from the beam-test data

The integral on $F_E(r)$, that was extracted from the fit, as a function of the distance in units of pads (1,8mm) for 5 GeV e- beam.

The effective Moli`ere radius has been estimated to be 10.1 mm (5.6 pads)

LumiCal stack configurations



Results – longitudinal shower

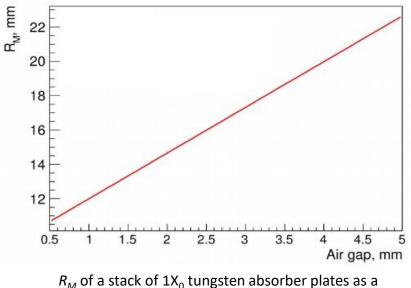
- Collaboration High precision design
- Major components developed by FCAL Collaboration can be operated as a system in the future LC experiments.
- The FCAL collaboration continues the detector R&D and forward region design optimisation.
- Thin LumiCal module with submillimeter thickness was developed and produced. Its geometry meets requirements of LumiCal conceptual design.
- Dedicated FLAME readout ASIC together with FPGA back-end were developed and for the first time tested on beam.
- Results from the test of the compact calorimeter demonstrator are promising.
- Analysis of data and MC from the full compact calorimeter prototype test beam is ongoing.
- Technologies developed in FCAL are applied in other experiments, e.g. CMS, XFEL and considered for LUXE at DESY.

THANK YOU FOR YOUR ATTENTION

12th International Conference on Position Sensitive Detectors 12 - 17 September 2021, Birmingham, UK

Acknowledgements:

This activity was partially supported by the Romanian UEFISCDI agency under grant no. 16N/2020. These studies were partly supported by the Israel Science Foundation (ISF), Israel German Foundation (GIF), the I-CORE program of the Israel Planning and Budgeting Committee, Israel Academy of Sciences and Humanities, by the National Commission for Scientific and Technological Research (CONICYT - Chile) under grant FONDECYT1170345, by the Polish Ministry of Science and Higher Education under contract nrs 3585/H2020/2016/2 and 3501/H2020/2016/2, by the Ministry of Education, Science and Technological Development of the Republic of Serbia within the project Ol171012, by the United States Department of Energy, grant de-sc0010107, and by the European Union Horizon 2020 Research and Innovation programme under Grant Agreement no.654168 (AIDA-2020). The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF).



12th International Conference on Position Sensitive Detectors 12 - 17 September 2021, Birmingham, UK

The transverse size of the shower is characterized by the Molière radius and it can be estimated using the following formula:

$$\frac{1}{R_M} = \frac{1}{E_S} \sum \frac{w_j E_{cj}}{X_{0j}} = \sum \frac{w_j}{R_{Mj}}$$

function of the air gap between them