Usability of ATLAS IBL Pixel Detectors for daily quality assurance in PBS proton therapy

¹TU Dortmund University, Department of Physics, D-44221 Dortmund, ²West German Proton Therapy Centre Essen, D-45122 Essen, ³West German Cancer Center, D-45122 Essen, ⁴ University

J. Weingarten^{1,*}, C. M. Bäcker^{1,2,3,4}, C. Bäumer^{1,2,3,4,6}, C. Behrends^{1,2,3,4}, K. Kröninger¹, I. Schilling¹, and B. Timmermann^{2,3,4,5,6}

technische universität dortmund

University Medicine Essen West German Proton Therapy Centre

Hospital Essen, D-45122 Essen, ⁴ University Hospital Essen, Clinic for Particle Therapy, D-45122 Essen, ⁶ German Cancer Consortium, D-69120 Heidelberg			
Introduction		Experimental setup	
 Proton therapy is very effective for tumor treatment → deposit prescribed dose in well-defined range Preferred dose delivery mode is Pencil beam scanning (PBS) → small diameter beam ((5-10) mm) is scanned in energy layers across target volume (using apertures can lead to sharper gradients at field edges) AAPM Task Group 224 has published comprehensive quality assurance (QA) guidelines for proton therapy centers → ensure safety of patients and efficiency of treatment (1) Need to verify spot shape, output constancy and range of pencil beam field during the daily QA Commonly used detectors: Lynx PT detector IBA Dosimetry (spot shape characterization) & DailyQA3 Sun Nuclear (output constancy verification) Possibilities of improving daily QA: perform all measurements with one detector & with higher spatial resolution HEP Pixel Detectors , e.g. ATLAS IBL Pixel detector, address issue by having high spatial resolution and ability to measure individual protons (2) 		 ATLAS IBL Pixel detectors (hybrid): 200 µm thick n-in-n silicon sensor, 80 x 336 pixel with a pitch of (250x50) µm², bump bonded to FE-I4B readout chip Designed to track charged particles: hit efficiency in excess of 99% Readout chip provides information on charge deposition in the sensor (time-over-threshold method, ToT) (3) Determination of dynamic range for the measurement of the energy deposition: set amplifier gain & discriminator threshold for every pixel (in this case adjusted to cover a range of (100-750) keV) Asses the applicability of the ATLAS IBL detectors for daily QA through characterizing measurements of a single pencil beam spot and a homogeneous field of (2.5 x 2.5) cm² (proton energy 100 MeV) All measurements were performed at the West German Proton Therapy Centre, Essen (WPE) Data is analyzed regarding required parameters for daily QA 	
Spot shape characterization Range verif		ification/ accuracy of delivered beam energy	Conclusion
• Lateral beam profile of a single PBS spot • expected width measured with Lynx PT σ_{Lynx} = (5.5±0.5) mm • Hitmap shows 2D Gaussian fit to fluence profile (fig. 1) • yields width of the beam profile σ = (5.78±0.03) mm (4) • Uncertainties an order of magnitude smaller than that of standard measurements • Transport of the seam profile of a single pencil beam spot. The intensity profile is fitted with a two-dimensional gaussian function. • Transport of the seam profile of a single pencil beam spot. The intensity profile is fitted with a two-dimensional gaussian function. • Transport of the seam profile of a single pencil beam spot. The intensity profile is fitted with a two-dimensional gaussian function.	 Using a PMMA absorber consist & 51 mm WET plate → exploiting the pixelat ToT distributions of different re → peak shifts to higher → protons with lower e Parameter to monitor proton e 	ting of four regions with different thicknesses (5 mm – 12.5 mm) (fig. 3) ted sensor structure (high spatial resolution) egions provide information about mean energy deposition in the sensor (fig. 4) r ToT values as the absorber gets thicker energies deposit more charge in the sensor energy during QA: ratio of most likely ToT in different regions n a simulated (Geant4) and measured ratio \rightarrow further investigation ongoing	 Present application of a high energy physics detector for daily QA measurements in proton therapy Characterized beam profile of a small spot with an order of magnitude higher spatial resolution Requested output constancy verified (uncertainties <3%) Proof-of-principle measurements using an absorber with different thicknesses and the ToT information regarding range verification show promising results Need to perform repetitions to determine detection limit for range variances Validate methods for different beam energies & field sizes
Dose consistency testing Image: Dose accuracy of 3% during daily QA is required • Fluence dependent detector response needs to be calibrated: detector is irradiated with varying doses (Monitor Units, MU) Image: Dose accuracy of 2.6% • Linear dependency between total averaged hits and dose (fig. 2) Image: Dose accuracy of 2.6%	x 160 180 200 220 dose [MU] nits summed across the sensor as a function of d dose (MU).	Signature	 B. Arjomandy et al. 2019 AAPM task group 224: Comprehensive proton therapy machine quality assurance, <i>Med. Phys.</i> 46 (8): 678-705 S. Grinstein on behalf of the ATLAS collaboration 2013 Overview of the ATLAS insertable B-layer (IBL) project <i>Nucl. Instr. and Meth. A</i> 699: 61-66 M. Garcia-Sciveres et al. 2011 The FE-I4 Pixel Readout Integrated Circuit <i>Nucl. Instr. and Meth. A</i> 636:155-159 J. Lambert et al. 2014 Daily QA in proton therapy using a single commercially available detector <i>J. Appl.Clin. Med. Phys.</i> 15.6: 217-228