

ATLAS ITK Upgrade

High Luminosity (HL) LHC

Upgrade in collisions → statistics → physics

	HL-LHC	Run-II (2018)
Luminosity	$7.5 \times 10^{34} cm^2 s^{-1}$	$\leq 1.9 \times 10^{34} cm^2 s^{-1}$
$\left\langle \frac{interactions}{Bunch\ crossing} \right\rangle$	35	200

- Pre-covid scheduled installation LS3, 2026
 - Since: global pressures to supply chains

ATLAS ITk upgrade

Desired physics performance relies on precision tracking

- → Inner Tracker (ITk) upgrade for new environment 🕏
- All silicon inner tracker
- Improved performance
 - Track Pattern reco.: speed, efficiency and fakes
 - Radiation tolerance
 - Material budget: detectors + services

Moderator
PP1 and enclosure
PP1 and enclosure
Strip pervices and cooling
Strip supports
Strip modules
Pixel supports
Pixel supports
Pixel modules
Beam pipe and IPT

Material

ATLAS Preliminary
Simulation

Titk Layout: 23-00-03

Titk Layout: 23-00-03

Material

See <u>ATL-PHYS-PUB-2021-024</u> for full details

Inner Tracker

All silicon inner tracker

 $\eta \equiv -\ln(\tan\frac{\theta}{2})$

Specification for ≥9 precision measurements per track

Pixels

- pseudo-rapidity coverage: $|\eta| < 4$
- 3 outer barrel layers & endcaps
- 2 replaceable inner barrel & endcaps
- Innermost layer 3D single chip modules
 - barrel: 25x100µm²
 - endcap: 50x50μm²
- Other layers planar quad modules
 - sensor + 4 chips, 50x50µm²

Strips

- pseudo-rapidity coverage: $|\eta| < 2.7$
- 4 barrel layers, 6 endcap discs
- 10/20 chips per barrel module
- 12-28 chips per endcap module

ITk quadrant: ATL-PHYS-PUB-2021-024 z [mi

Pixels: Expected radiation dose

Outer Barrel 1.7MGy @ 4000fb⁻¹

Outer Endcap 3.5MGy @ 4000fb⁻¹

Inner Barrel >7.3MGy @ 2000 fb-1

ITk Pixel Modules

Hybrid module consists in frontend + sensor on flex

Front End

Final Chip: ITkPixV2

- ASIC in TSMC 65nm CMOS
- 400x384 pixels, 20.1x21.6mm²
- 4 (1.28 Gbps) data lines, output data compression
- shared uplink with command forwarding
- Single Event Effect hardened

Test chip: RD53A

- Joint ATLAS, CMS prototype (½ final size)
- Low threshold ~600 e-
- Radiation hardness up to 5 MGy

Sensor

- Inner layer (L0): 3D single chip sensors
 - 150µm active thickness + 100µm support wafer
- All else: n-in-p planar quad chip sensor
 - L1: 100µm thick sensor
 - All else: 150µm thick sensor

Flex PCB – thin, low Cu with high datarate traces

Pixel Module Assembly I

Hybrid detector: multi-component and multi-stage assembly process

Front End

Single vendor
Chip thinned to 150µm

Sensor

Multi vendor selection through *Market Survey*

Hybridisation

- 1. Sensor wafer: Under Bump Metallisation
- 2. Front end wafer: Bump Deposition
 - fine pitch: ~10s μm, high density: 400/mm²
- 3. Wafer thinning, dicing & flip-chipping
 - Challenging: thin FE and thin sensor

RD53A: Quad module readout

Ideal (real): single (multiple) vendor process at one (across several) sites

Reception measurements required

Vendors selection through *Market Survey* procedure

Pixel Module Assembly II

"bare" modules dressed for loading

Flex PCB mounting

Thin, low Cu (see later)

- Commercially unusual but possible
- Wirebond front ends to PCB
- Fine bond pitch limits reworking
 First QC/QA tests performed on module

Sensor Tile Module PCB Module carrier

Read out Chip

N+ pixel

Guard Ring

HV encapsulation

Parylene-N: chlorine free to avoid halogen corrosion

• Primary (>5µm): stop discharge between HV sensor and chip

High voltages necessary after irradiation (>500V)

- Secondary (>>5µm):
 - Protect wirebonds from foot corrosion and F_{Lorentz}
 - Mitigate external stresses
 (e.g. loading, transport, thermal cycling)

QA:
Single test
QC:
repeated check

Chip Edge

Pspray

GND

Qualification of assembly vendors with RD53A modules

QA/QC

QA/QC tests across production to ensure production standards and

performance over lifetime

Range of tests over assembly stages:

- Optical inspection
- Mass measurements
- Metrology
- Wire bond checks
 - E.g. breaks: type & force
- Electrical tests
 - E.g. sensor CVs, IVs
 - E.g. front end configurations
- Thermal cycling
 - Module robustness (see next)

NB Generated test data is retained

see PDB below

University of Glasgow Thermal Cycling & Irradiation

Demanding temperature range specification

20°C below run-II (-25°C)

Thermal stress from CTE mismatch is known issue caused by flex Cu content

Induces bow and breaks bump bonds

Finite Element Analysis predict bump breaks

- Degradation by strain over many cycles → lifetime
- Match well with laboratory studies

Irradiation

- Irradiations to levels of outer barrel and endcap
 - HV encapsulation holds @ 1000V
 - Sensor characteristics remain in spec.

Central barrel:

Data rates

1% chip occupancy for usable pattern recognition with HL-LHC pile-up

- ITk (run-II): ~9.5k (2k) modules with 1.4G (92M) channels
- 1.28Gbps data lanes, 80% link occupancy, 1MHz trigger
 - Links per module varies across detector
- Custom encoding suppresses addressing per chip
 - Naive: 16 bit address + 16 bit ToT

Simulated performance validates encoding

ATLAS event simulation software for pseudo-data

Datarates are manageably low and event sizes comparable to run-II

• Important for trigger processing and transfer to disk

Consequences of high datarates

- Cross-talk shielding (beware X₀!)
- Impedance matching
- PCB design (corners!)

Pixel

components per institute

ITk Production Database

Scale of ITk production involves large dataset to track progress

- ~9,500 pixel modules; ~17,000 strip modules
- Inter-continental, multi-stage production chain

Common Production Database for all ITk projects

- Custom database built upon mongoDB (with API access)
- Store data & images
- Expected data upload until end of production
- Resource during operation

Functionality: registration, test upload, shipping, reporting

API access allows interface customization

- Diverse user profiles: technicians, engineers, students, RAs, academics, engineers
- Custom interfaces: GUIs, webapps, notebooks, scripts

Summary

Pre-production for Atlas ITk pixel modules nears

Atlas upgrade physics programme drives performance and design

- High precision, radiation hard, rapid readout pixel modules
- Large scale HEP production for inner tracker upgrade

Multi-component and multi-stage assembly process

- Vendor selection based on market survey tender process
 - sensor foundries, hybridisation sites
- Module assembly steps finalising
 - Techniques to specification across sites
 - Specification documents for each stage
 - Defined QC/QA measurements
 - Track stages and consistency across sites

Atlas experiment (and other LHC) modern HEP schedule

- Process of reports and reviews
- ITk Pixels Final Design Reports pending before Pre-Production
- Hurtling towards installation in LS3

Back-up

Back-up

ATLAS ITK @ PSD12

Results from ATLAS-ITk Strip Sensors Quality Assurance Testchip

The pre-production of the strip sensors for the Inner Tracker (ITk) of the ATLAS Upgrade detector at

- Liric Bach (IMB-CNM, CSIC)
- iii 15 September 2021 15:54
- Teaching and Learning Building (University of Birmingham)
- A PSD12: The 12th International Conference on Position Sensitive Detectors

Application of material budget imaging for the design of the ATLAS ITk strip detector

material samples planned in the design of the local support structures of the new ATLAS Inner Tracker (ITK

- Jan-Hendrik Arling (Deutsches Elektronen-Synchrotron (DE))
- iii 15 September 2021 15:53
- Teaching and Learning Building (University of Birmingham)
- A PSD12: The 12th International Conference on Position Sensitive Detectors

The ATLAS ITk Strip Detector System for the Phase-II LHC Upgrade

For this, an all-silicon Inner Tracker (ITk) is under development with a pixel detector surrounded by

- 📤 William Trischuk (University of Toronto (CA)), Alessandra Ciocio (Lawrence Berkeley National Lab. (US))
- Teaching and Learning Building (University of Birmingham)
- APSD12: The 12th International Conference on Position Sensitive Detectors

Characterisation of HV-MAPS ATLASPix3 and its applications for future lepton colliders

It is designed to meet the specifications of outer layers of the ATLAS inner tracker (ITK) pixel subsystem

- 📤 Bianca Raciti (Università degli Studi di Milano), Ivan Peric (KIT Karlsruhe Institute of Technology (DE)), et al.
- iii 17 September 2021 08:09
- Teaching and Learning Building (University of Birmingham)
- APSD12: The 12th International Conference on Position Sensitive Detectors