

Introduction

Position sensitive silicon detectors are an indispensable ingredient of any collider experiment mostly as tracking detectors, but also for calorimetry (becoming the main user of silicon – CMS-HGCAL)

Physics requirements in terms of integrated luminosity and the resulting particle fluences are ever escalating

- for LHC 10^{15} n_{eq}/cm² considered extremely difficult
	- design was 730/fb @14TeV...
- **HL-LHC takes it to nx10¹⁶ neq/cm² (vertex) or even 10¹⁷ neq/cm² (FW calo)** $~\sim$ x20
	- 4000/fb @14TeV
- **FCC is dreaming of towards 10¹⁸ neq/cm² for the tracker** ~x600
	- 30/ab @100TeV

1 MeV neutron equivalent fluence

"Silicon strip detectors (near the beam pipe) appear to be limited to... $\leq 10^{32}$...the 10^{32} limit could be optimistic." (PSSC Summary Report pg. 130, 1984)

"Can silicon operate beyond 10^{15} neutrons cm⁻²?" Nucl. Instr. & Meth. A 501 (2003), p 138

Apart from particle physics similar conditions in:

 \triangleright Beam monitors (therapy beam monitoring, physics experiments)

➢Instrumentation for ITER (fusion reactor) required radiation hardness comparable or even larger than that of HL-LHC

Luis F. Delgado-Aparicio, Burning-plasma diagnostics: photon & particle detector development needs, 31th RD50 Workshop

"Extreme" starts at fluences \sim 10¹⁶ cm⁻²

What should future sensors do?

➢We don't only require excellent position resolution and detection efficiency even at the harshest conditions, **but also excellent timing resolution (4D tracking) as well** *(see Nicolo's talk on Tuesday)*

- \triangleright much better/simpler pattern recognition, ghost rate reduction
- \triangleright better and faster tracks/physics reconstruction, better tracking algorithms
- ➢less CPU power (improved cost and energy efficiency)
- \triangleright effectively more luminosity
- \blacktriangleright In addition we want:
	- ➢Very small material budget
	- ➢Low power consumption

Effective pile up – number of vertices compatible with reconstructed tracks Eff. pile-up = 1: Indication for unambiguous primary vertex identification

Sensor design – a key to radiation hardness

Charge collection (highly geometry dependent) is given by:

$$
I = q\vec{v}\vec{E}_{w} \text{ s. Ramo, Proceedings of I.R.E. 27 (1939) 584.}
$$
\n
$$
Q(t_{int}) = \sum_{e-h \text{ pairs}} \int_{t=0}^{t_{int}} I_{e,h} dt = q_0 \sum_{e-h \text{ pairs}} \int_{t=0}^{t_{int}} \exp(-\frac{t}{\tau_{eff,e,h}}) \mu_{e,h} \vec{E} \cdot \vec{E}_{w} dt
$$
\n
$$
+ 4.
$$

Planar detectors:

 \triangleright n⁺-p

3D detectors

- ➢ thin sensors
- ➢ defect engineered ([O],[C])
- ➢ **GAIN**

1.) Choice of readout side – always where the field is high unless you can overdeplete!

2.) "collect" carriers with larger μ ^{*⋅} τ_{eff}*</sup> product – i.e. electrons, n⁺ -p readout

3.) Optimize geometry for trapping dominated environment τ_{eff} <<t_{drift}

thin planar sensors perform better than thick at the same voltage

4.) Separate generation path from drift 3D detectors

5.) GAIN (LGADs, irradiated silicon)

Optimize S/N not only S (charge)!

Radiation damage

Radiation damage – good old LHC times

Radiation induces mostly negative space charge.

T. Lari et al., Nucl. Instr. and Meth. A 518 (2004) 349. V. Cindro et al., Nucl. Instr. and Meth. A599 (2009) 65.

 β (-10°C, t=min Vfd)

 110^{-16} cm²/ns1

Electrons

Holes

Huge effort invested in RD48 and RD50 to understand the damage on microscopic level.

 \triangleright annealing

24 GeV protons

200 MeV/c pions (average)

 5.3 ± 0.7

 6.6 ± 0.8

reactor neutrons

 3.5 ± 0.6

 4.7 ± 1

Expectations LHC->HL-LHC

In general Hamburg models works fine at LHC – good agreement for leakage current, Neff and CCE, but

Linear extrapolation from low fluence data for standard float zone detectors (2·10¹⁶ cm⁻²)

- Current: *I leak* = 0.8 A/cm³ @20°C
	- \degree 0.4 mA/cm² for 300 µm thick detector @ -20 \degree C
- Depletion: N_{eff} ≈ 4x10¹⁴ cm⁻³
	- *FDV* ≈ 30 kV
- Trapping *τeff* ≈ 1/8 ns = 125 ps
	- *Q ≈ Q⁰ /d vsatτeff* ≈ 80 e/μm 200 μm/ns 1/8 ns = 2000 e in very high electric field (>>1 V/μm)

Looks much like Mission Impossible, but …

Silicon sensors performance at very high fluences

There are several reasons why the grim projections didn't materialize $-$ the nature was kind to us:

➢**trapping probabilities saturate**

➢**the electric field is present in the entire device – "active bulk"**

➢**charge multiplication**

it took us a decade to gain understanding about those effects and we are still learning …

Trapping at high fluences

Trapping gets smaller than extrapolated – nothing is linear everywhere

- defect formation is not linear (2nd order processes?)
- high electric field in a device may influence (de)trapping times which become position dependent


```
\lambda = \lambda_e + \lambda_h = v_e \tau_e + v_h \tau_hl~250 mm for 
saturated drift 
velocities at 3e15 cm-2
```
At already 3e15 cm⁻² the trapping seems to be 3x smaller than projected from lower fluences. The main obstacle is a direct measurement on the trapping probability with TCT which works only up to few 10^{14} cm⁻².

Active bulk

Edge-TCT allows for studies of velocity/charge collection profiles in heavily irradiated sensors

- generation current accumulates, increasing *p* and *n* in opposite directions through SCR – "double junction" – dynamic configuration dependent on temperature annealing time …
- *electron* and *hole* traps, contributing to space charge

Full depletion voltage doesn't determine active field region at high fluences.

- ➢ whole detector volume is active (velocity in the saddle 30% of *vsat*)
- \triangleright the high field region penetrates deeper in the detector than predicted (saturation of g_c ?)

Performance at FCC-hh levels ~10¹⁷ cm-2

Decrease of mobility and saturation of the trapping:

 λ = λ_e + λ_h = v_e τ_e + v_h τ_h \sim ($\mu_e \beta_e$ + $\mu_h \beta_h$)∙V/D∙ Φ_{eq} ^b l<<*D -> Q=* lr ⁼*k∙Ф^b ∙V* $Q = k$ *⋅*Ф^{*b*}⋅V

$$
Q_{\text{mean_75um}} = k \cdot \Phi^{\text{b}} \cdot V
$$

 $k = 44$ el/V, b = -0.56 , (*Ф* in 1e15 n/cm² , *V* in volts)

Signals of several 1000 e!

Forward bias vs Reverse Bias

- \triangleright the difference in collected charge for forward and reverse bias voltage disappears at high fluences
- \triangleright lower current in reverse bias \rightarrow can go to higher bias voltages and outperforms forward biased samples
- \triangleright Annealing of detectors has no effect on operation -> the space charge region is very small

In a certain sense the silicon is becoming easier to work with …. much less parameters to control.

➢50 µm epitaxial LGAD – not LGAD anymore at extreme fluences (see <https://indico.cern.ch/event/719814/contributions/3022499>)

 \triangleright Collected charge compatible with 75 μ m – devices (small difference in thickness)

more on extreme fluences from Valentina

 \triangleright The sensors can stand the 1100 V (<22 V/µm>) and are operational – at lower fluences they break down much earlier! Clearly impact ionization heavily affected by high fluences -> **its understanding is one of the main goals for future R&D**

➢Does **Single Event Burnout** (destructive breakdown of thin sensors due to high energy deposits) affect the performance in the same way as at low fluences (*see G. Medin's talk in this session*)

➢50 µm epitaxial LGAD – not LGAD anymore at extreme fluences (see <https://indico.cern.ch/event/719814/contributions/3022499>)

 \triangleright Collected charge compatible with 75 μ m – devices (small difference in thickness)

 \triangleright The sensors can stand the 1100 V (<22 V/µm>) and are operational – at lower fluences they break down much earlier! Clearly impact ionization heavily affected by high fluences -> **its understanding is one of the main goals for future R&D**

➢Does **Single Event Burnout** (destructive breakdown of thin sensors due to high energy deposits) affect the performance in the same way as at low fluences (*see G. Medin's talk in this session*)

Operation of 3D sensors at ~10¹⁷ cm⁻²

Mobility at extreme fluences

Edge-TCT measurements in forward bias allow extraction of mobility – actually sum of mobilities

Silicon becomes much "slower" at lower fields, but the saturation velocity is assumed to be the same:

- ➢ Larger bias voltages required (linear dependence of collected charge on bias voltage)
- \triangleright Higher resistivity due to lower mobility

Trapping times at extreme fluences

Trapping time estimated from fit of Charge vs. fluence

- forward bias, use approximation: *E = V/D*
- fluence dependent mobility $\mu_0 = \mu_0(\Phi)$

Extrapolation: τ[ps] = 200∙Ф**-1** This work: τ[ps] = 540∙Ф**-0.62** (Ф in [1e16 n/cm**²**]) **value close to the one obtained under reverse bias from charge collection dependence on bias voltage**

but our life is more complicating in 4D

The problem at any silicon detector is that the signal is small, but our requirements are even more demanding – we want to measure the precise timing with them, < 30 ps

Planar sensors at extreme fluences

In order for the planar sensors to fulfil the requirement high gain in very thin sensors would be required!

(see V. Sola's talk)

 $t_{\text{collection}}$ ~dominated by trapping ~0.5 ns

We need gain or/and extremely low noise - very difficult to see how now! (speed requires power and that is hardly not a option)

**NA62, NIM A958 (2020) 162127*

***ATLAS HGTD TDR*

\triangleright Acceptor removal is a problem for LGADs – reduction of gain

- ➢ can we introduce/find mechanism to suppress the acceptor removal so that increase of required bias would used to compensate impact ionization
- \triangleright C-infusion in GL improves the situation, but the use is still limited to 3e15 cm⁻²
- ➢ Can we replace B with something else that is much more resilient (RD50 projects Al, In…) we know Ga is not any better.

➢Can we rely on deep levels that will give rise to the gain (see V. Sola's talk) after the gain layer doping is lost at extreme fluences

- \triangleright lots of unknowns simply because all the silicon parameters is difficult to measure
- \triangleright The problem with deep defects is that their occupation is a strong function of free carrier concentration quenching of gain

higher resistivity

3D – detectors

There are two approaches taken so far:

➢Column 3D detectors (different patterns)

➢Trench 3D detectors *(web.infn.it/timespot/)*

Inclined tracks – cell size/thickness problem !

3D – detectors

- \cdot 55x55 μ m² pixels
- 150 µm active thickness
- Collection electrode 135 µm deep

Important development of ASIC in 28 nm technology with simulated and theoretical limit of jitter around ~10 ps.

50x50 μ m² pixel $285 \mu m$ thick CNM – 3D detector

Fluence (1Mev n_{eq} / cm^2)

What about other materials?

➢For extreme fluences and tracking (4D) applications diamond and SiC are next to silicon regarding the required speed

➢SiC was tested in early days of RD50 and was shown not to outperform silicon, but progress has been made recently

 \triangleright Radiation hardness of diamond is on par with silicon in $\lambda(\Phi)$:

- ➢Less generated charge by factor of three requires thicker material
- \triangleright thicker material adversely affects the timing applications

➢Impact ionization is difficult to achieve (similar impact ionization for e and h) and requires extreme fields

 Φ [10¹⁴ cm⁻²]

Diamond sensors at extreme fluences

F.Bachmair et al., Nucl. Instr. and Meth. A786 (2015) 97.

3D diamond detectors are a very promising detectors considering lower capacitance, very narrow electrodes, no leakage current, but scalability, cost, availability …

Conclusions

➢Silicon is far more resilient material than we imagined and will likely remain the material of choice

➢the damage exhibits saturation and is not as severe as projected from lower "LHC" fluences

- \triangleright gain due to radiation induced space charge
- \triangleright "active bulk"

➢Small cell size 3D devices were shown to work with ASICs up to ~3e16 cm-2 and planar pixel detectors up to 2e16 cm-2

 \triangleright Measurements of charge show few 1000 e even as high as 3e17 cm⁻² although for timing applications the required performance will be extremely difficult to achieve – it is still early days … clearly matching electronics will be at least equal if not much bigger challenge

 \triangleright It is crucial to understand all the fundamental properties of heavily irradiated silicon – main R&D for the future (mobilities, trapping, recombination, impact ionization ….)

 \triangleright New ideas will be important and may become possible and/or mature over the years:

- ➢"Marriage" of LGADs and 3D (either by trench filling, careful substrate selection with small interelectrode distance allowing charge multiplication without special processing of gain layer)
- ➢"Marriage" of CMOS and 3D.

NOTHING IS **IMPOSSIBLE** THE WORD **ITSELF SAYS** "I'M POSSIBLE"! - AUDREY HEPBURN

JSI bliana Slovenia