Convective-Reactive Nucleosynthesis in O-C Shell Mergers

Wednesday 16 October 2024 14:50 (10 minutes)

O-C shell mergers in massive stars have been proposed as a potential site for the production of p-process isotopes. These mergers provide a convective-reactive environment where the timescales for the nucleosynthesis of C-shell ashes such as ²⁰Ne and convective mixing of species are of the same order. However, the nucleosynthetic pathways of these convective-reactive processes remain largely unexplored. In this study, we use the $15M_{\odot}$, Z = 0.02 model from the NuGrid stellar data set II (Ritter et al., 2018) to create a detailed post-processed model of an O-C shell merger event. Three preliminary experiments were conducted by varying the reaction rates of 20 Ne(γ , p) 16 O, the (γ , p) rates for the odd-Z isotopes 31 P, 35 Cl, 39 K, 45 Sc, and all (p, γ) rates by a factor of 10 up and down from their default values. The results show that altering the 20 Ne(γ , p) 16 O rate has the strongest effect on the production of p-nuclei, notably 115 Sn, 138 La, 162 Er, 168 Yb, and 180 Ta. The other two experiments show a smaller impact on all isotopes. We will present the results of a full multizone Monte Carlo analysis of the impact from varying all reaction rates.

Length of presentation requested

Oral presentation: 8 min + 2 min questions (Poster-type talk)

Please select a keyword related to your abstract

Stellar Models and Galactic Chemical Evolution

Author: Mr ISSA, Joshua (University of Victoria)
Co-authors: HERWIG, Falk (University of Victoria); DENISENKOV, Pavel (University of Victoria)
Presenter: Mr ISSA, Joshua (University of Victoria)
Session Classification: Afternoon session