Contribution ID: 58

Type: Oral Presentation

Accounting for Short-Lived Radionuclides in the Early Solar System in the Context of a Triggered Star Formation Origin of the Solar System

A critical constraint on solar system formation is the high 26 Al/ 27 Al abundance ratio of 5 ×10⁻⁵ at the time of formation, which was about 17 times higher than the average Galactic ratio, while the ⁶⁰Fe/⁵⁶Fe value was lower than the Galactic value of 3×10^{-7} . This challenges the assumption that a nearby supernova was responsible for the injection of these short-lived radionuclides into the early solar system. We show that this conundrum can be resolved if the Solar System was formed by triggered star formation at the edge of a Wolf-Rayet (W-R) bubble. Aluminium-26 is produced during the evolution of the massive star, released in the wind during the W-R phase, and condenses into dust grains (that have been observed around W-R stars in IR observations). The dust grains survive passage through the reverse shock and the low density shocked wind, reach the dense shell swept-up by the bubble, detach from the decelerated wind and are injected into the shell. The dust grains will be destroyed by grain evaporation or non-thermal sputtering, releasing the ²⁶Al into the shell. Some portions of this shell subsequently collapses to form the dense cores that give rise to solar-type systems. The star will either collapse directly to a black hole, as in some models, or give rise to a supernova explosion. Even if the latter, the aspherical supernova does not inject appreciable amounts of ⁶⁰Fe into the proto-solar-system, thus accounting for the observed low abundance of 60 Fe. We discuss the details of various processes within the model, and conclude that it is a viable model that can explain the initial abundances of ²⁶Al and ⁶⁰Fe. Besides ²⁶Al and ⁶⁰Fe, many other short-lived radionuclides (SLRs) were present in the ESS, including ¹⁰Be, ³⁶Cl, ⁴¹Ca, ⁵³Mn, ¹⁰⁷Pd, ¹²⁹I, and ¹⁸²Hf. We further investigate whether the triggered star formation model can account for the abundance of these other SLRs, and show that it can adequately explain the abundances of most short-lived radionuclides in the early solar system.

Length of presentation requested

Oral presentation: 25 min + 5 min questions (Review-type talk)

Please select between one and three keywords related to your abstract

Origin of the Solar System

2nd keyword (optional)

Meteoritic Materials and Stardust

3rd keyword (optional)

Stellar evolution

Author: DWARKADAS, Vikram

Co-authors: Prof. DAUPHAS, Nicolas (University of Chicago); Prof. MEYER, Bradley (Clemson University); Mr DILMOHAMED, Shamaul (University of Chicago); Mr BOYAJIAN, Peter (University of Chicago); Dr BOJAZI, Michael (Clemson University)

Presenter: DWARKADAS, Vikram