

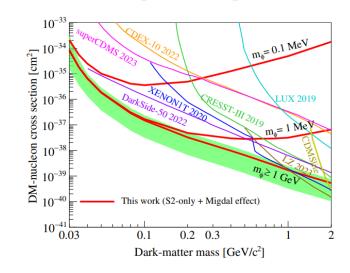
Commissioning of the MIGDAL detector with fast neutrons

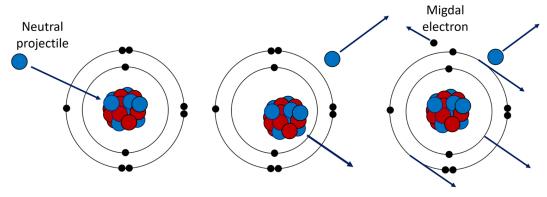
Tim Marley

Imperial College London

On behalf of the MIGDAL Collaboration

DMUK Meeting January 2025 - KCL





The Migdal effect

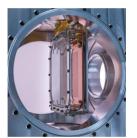
- Direct DM experiments invoke the Migdal effect to probe energies below their nuclear recoil threshold.
- Predicted by A. Migdal in the 1930s/1940s and first observed in radioactive decays in the 1970s but not yet recorded in nuclear scattering.
- Migdal In Galactic Dark mAtter expLoration (MIGDAL) Experiment
 - We aim to achieve the unambiguous observation (and characterisation) of the Migdal effect using a low-pressure optical TPC and high-energy neutrons.

Migdal topology involves an electron and a nuclear recoil originating from the same vertex.

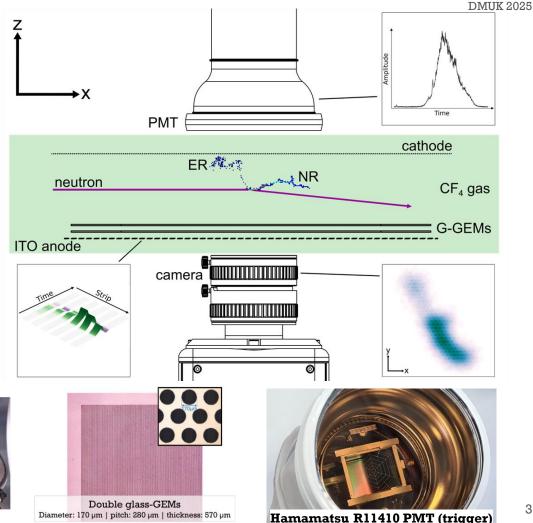
The MIGDAL Experiment

- High-yield neutron generator
 - D-D: 2.47 MeV (109 n/s)
 - Defined, collimated beam
- Low-pressure gas: 50 Torr of CF₄
 - Visible light + VUV scintillator
 - Extended particle tracks, Long attenuation length for gamma rays
 - Can add fraction of noble gases relevant to dark matter searches (Ar / Xe)

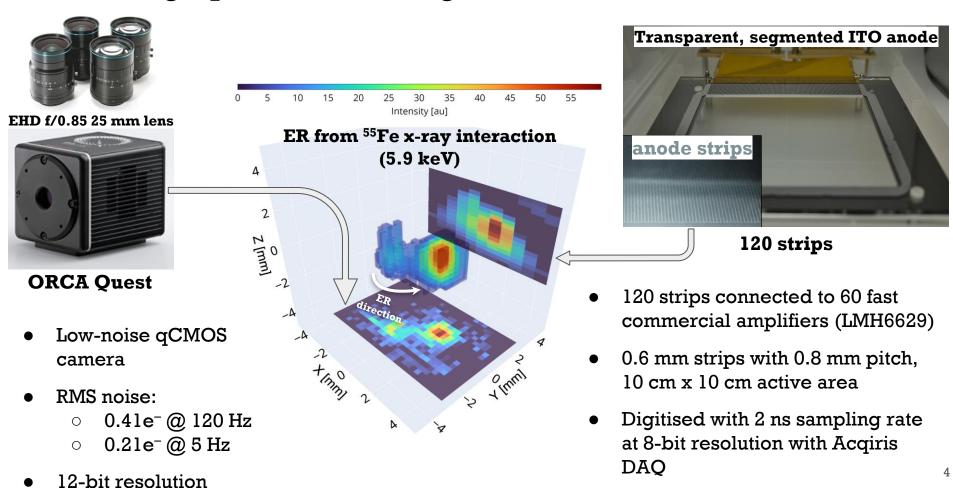
Optical TPC

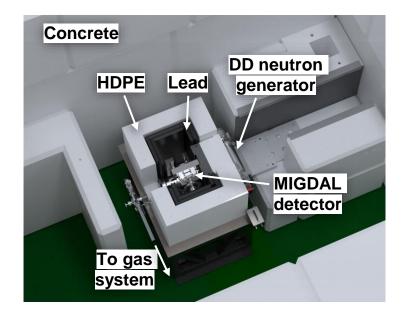

Amplification: 2x glass-GEMs

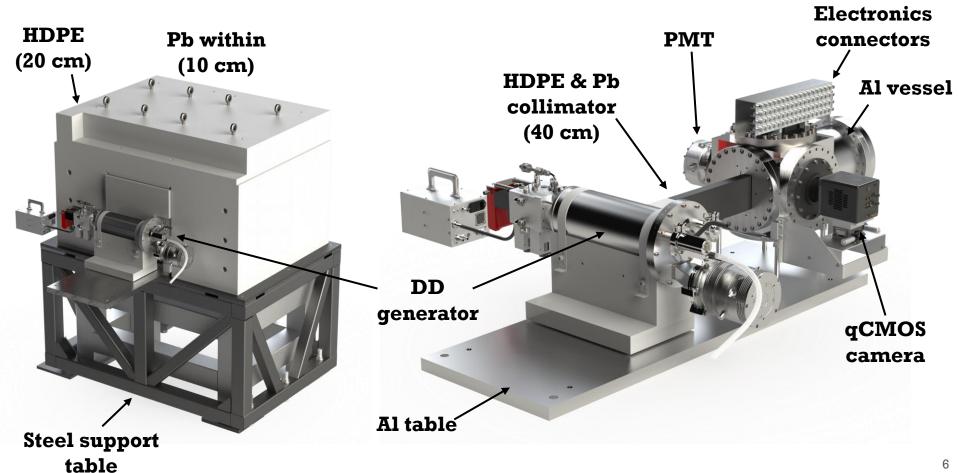
Optical: camera + photomultiplier tube


120 ITO anode strips Charge:

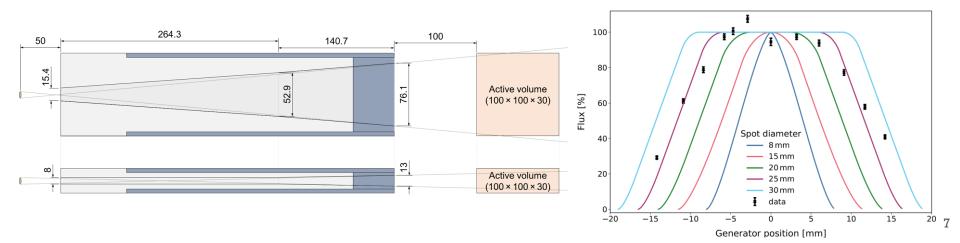
Electron and nuclear recoil tracks


- Migdal: NR+ER tracks, common vertex
- NR and ER tracks have opposite dE/dx profiles
- 5 keV electron threshold (55Fe calibration)

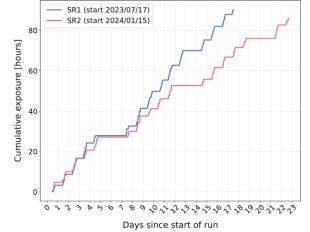

Combining optical and charge readout


NILE facility at Rutherford Appleton Laboratory, UK

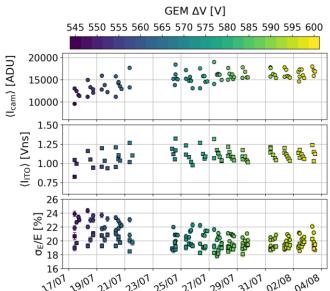
- Bespoke DD and DT neutron irradiation facility located within Target Station 2 at ISIS
 Neutron and Muon Source, RAL
- Concrete bunker with interlocked access
- MIGDAL experiment sits in the centre of the bunker



Shielded and unshielded renders of the experiment

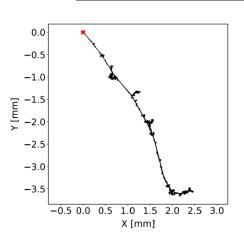

Characterising the neutron and NR rate

- Expected 2.6×10⁵ n/s entering the active volume, but measured 6×10⁴ n/s.
- Our collimator was designed around an **8 mm** neutron production spot diameter within the DD generator, but the measured diameter was much closer to **25 mm**.
- This reduced the NR event rate in the active volume from ~15 Hz to ~5 Hz.
- The camera was pulled closer to the active volume to capture more light.
 - O This further reduced the contained NR rate in the ROI to ~2 Hz, which we observe in the data.


Science operations

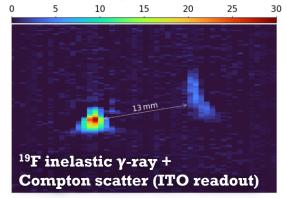
- First science run
 - o 17/07/23 03/08/23
- Second science run
 - 0 15/01/24 06/02/24

- Data taken using D-D neutron generator recorded continuously during 10-hour long shifts.
 - o 50% of our data remains blinded.
 - Approximately 500,000 NRs in total.
- Calibration runs with ⁵⁵Fe every 3 hours.
- We replaced the gas medium once/twice per week.

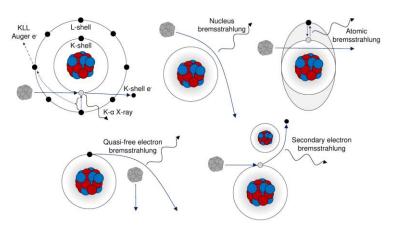

Summary of gain and gain resolution over the course of first science run.

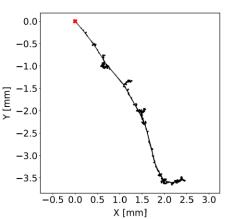
Backgrounds

- We do not expect to be limited by background.
 - We wanted to confirm this by measuring the sideband outside the energy and spatial ROI.
- Secondary NRs could create a split topology, similar to Migdal.
 - We can exclude these with kinematic and parametric constraints.
- Compton scatters of γ-rays from neutron inelastic scattering can create events with NR + ER.
 - This is the main source of background.


KLL Auger er K-shell K-shell er K-a X-ray	Atomic msstrahlung
Quasi-free electron bremsstrahlung Secondary electron bremsstrahlung	

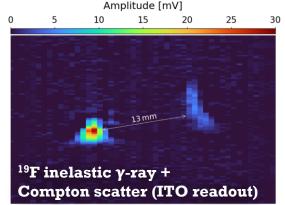
(Astropart. Phys. 151 (2023) 102853)


Component	Topology	D-D neutrons	
		> 0.5	$5-15~\mathrm{keV}$
Recoil-induced δ -rays	Delta electron from NR track origin	≈0	0
Particle-Induced X-ray Emission (PIXE)			
X-ray emission	Photoelectron near NR track origin	1.8	0
Auger electrons	Auger electron from NR track origin	19.6	0
Bremsstrahlung processes [†]			
Quasi-Free Electron Br. (QFEB)	Photoelectron near NR track origin	112	≈ 0
Secondary Electron Br. (SEB)	Photoelectron near NR track origin	115	≈ 0
Atomic Br. (AB)	Photoelectron near NR track origin	70	≈ 0
Nuclear Br. (NB)	Photoelectron near NR track origin	≈ 0	≈ 0
Neutron inelastic γ -rays	Compton electron near NR track origin	1.6	0.47
Random track coincidences			
External γ - and X-rays	Photo-/Compton electron near NR track	≈ 0	≈ 0
Trace radioisotopes (gas)	Electron from decay near NR track origin	0.2	0.01
Neutron activation (gas)	Electron from decay near NR track origin	0	0
Muon-induced δ -rays	Delta electron near NR track origin	≈ 0	≈ 0
Secondary nuclear recoil fork	NR track fork near track origin	_	≈1
Total background	Sum of the above components		1.5
Migdal signal	Migdal electron from NR track origin		32.6


Amplitude [mV]

Backgrounds

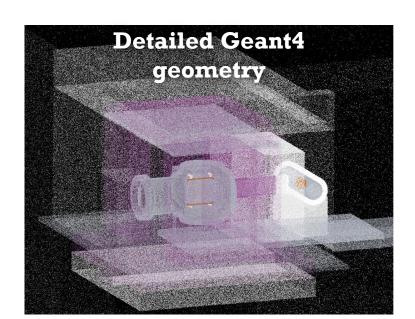
- We do not expect to be limited by background.
 - We wanted to confirm this by measuring the sideband outside the energy and spatial ROI.
- Secondary NRs could create a split topology, similar to Migdal.
 - We can exclude these with kinematic and parametric constraints.
- Compton scatters of γ-rays from neutron inelastic scattering can create events with NR + ER.
 - This is the main source of background.

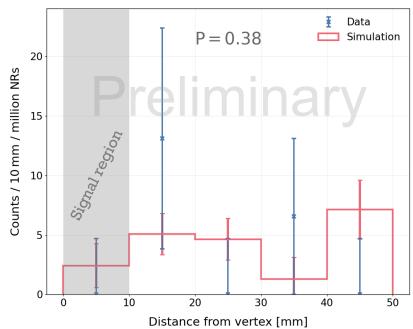


Migdal signal

D-D neutrons Component Topology >0.5 5-15 keV Eliminated by applying an energy threshold Neutron inelastic γ -rays Compton electron near NR track origin 1.6 0.47Eliminated by ITO timing resolution Secondary nuclear recoil fork NR track fork near track origin ≈ 1 Total background Sum of the above components 1.5

(Astropart. Phys. 151 (2023) 102853)


Migdal electron from NR track origin


32.6

Measuring the neutron inelastic γ -ray sideband

- We have constructed a detailed GEANT4 detector geometry to calculate the expected number of γ -rays.
- The number of simulated and measured NR + ER coincidences is consistent.

• The expected (and measured) number of ERs produced within 3 mm of an NR vertex is very small (good news).

NR

Beginning the search for Migdal with machine learning

NR afterglow

p+α (not fid.)

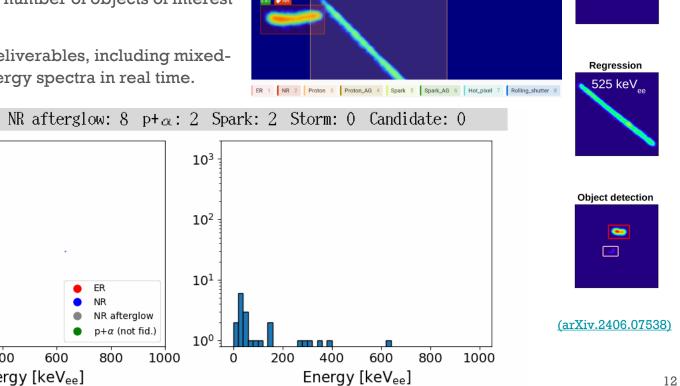
800

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

30

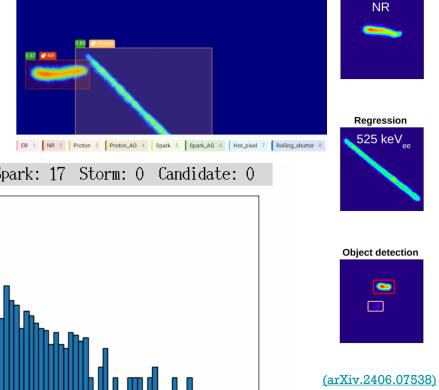
10

0

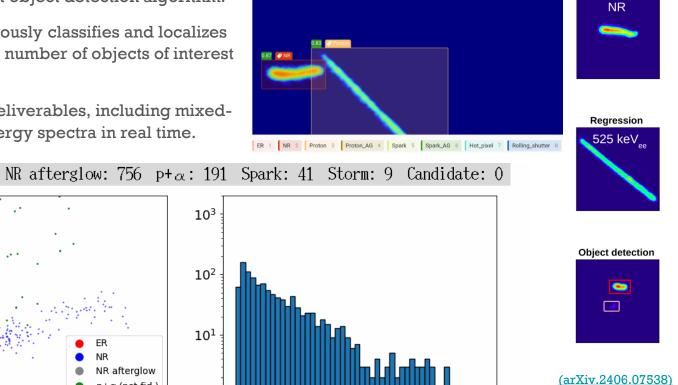

200

400

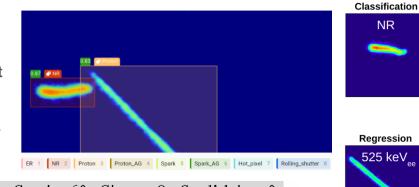
600

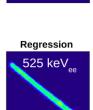

Energy [keV_{ee}]

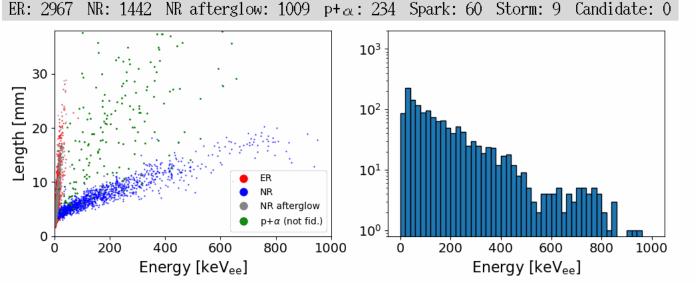
Length [mm]

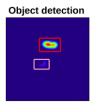

Beginning the search for Migdal with machine learning

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.


Beginning the search for Migdal with machine learning

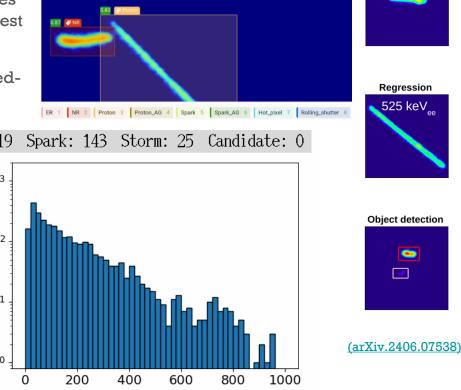

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.




Beginning the search for Migdal with machine learning

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

(arXiv.2406.07538)


16

Classification

NR

Beginning the search for Migdal with machine learning

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

NR

Beginning the search for Migdal with machine learning

NR afterglow

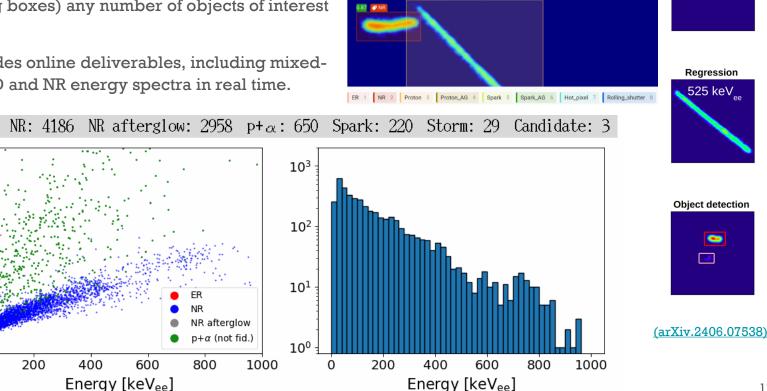
 $p+\alpha$ (not fid.)

1000

800

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

30

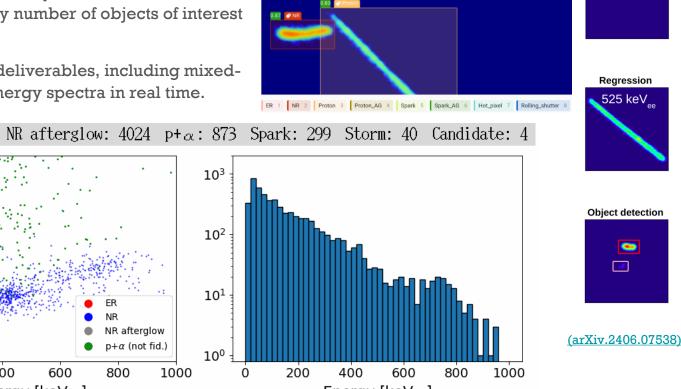

200

400

Energy [keVee]

600

Length [mm]


18

Classification

NR

Beginning the search for Migdal with machine learning

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

NR

Beginning the search for Migdal with machine learning

IR afterglow

 $p+\alpha$ (not fid.)

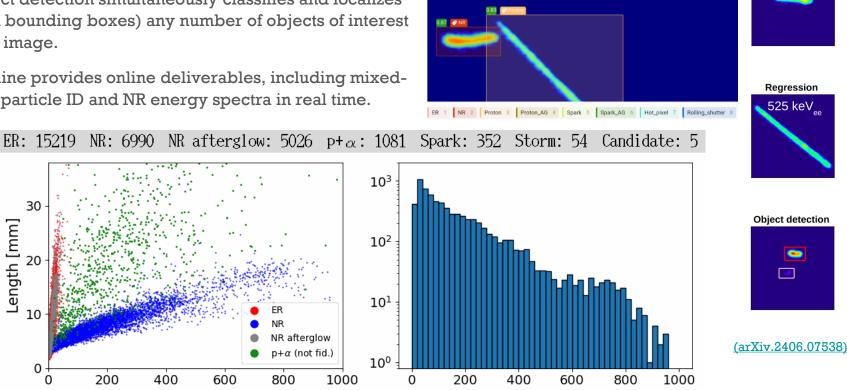
1000

800

- YOLOv8 is a state-of-the-art object detection algorithm.
- Object detection simultaneously classifies and localizes (with bounding boxes) any number of objects of interest in an image.
- Pipeline provides online deliverables, including mixedfield particle ID and NR energy spectra in real time.

30

0

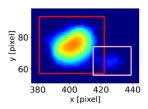

200

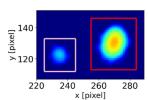
400

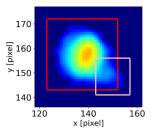
600

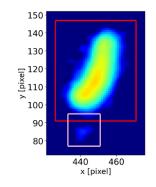
Energy [keVee]

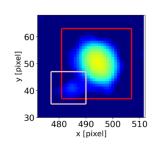
Length [mm]

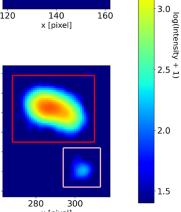

Energy [keVee]

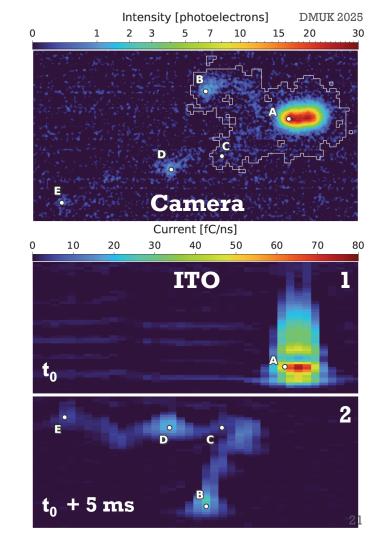

3.5


YOLOv8 for data reduction


- YOLO currently operates on the images from the camera subsystem.
- YOLO finds several ERs within the vicinity of NRs.
- Keeping only frames with a single ER and NR within 6 mm of each other reduces a sample of 20 million frames to 1,641.
- Are these all Migdal? **No.**
- Camera exposure time (8.33 ms) is long enough for (few) events to pileup.
- We can resolve this with the ITO subsystem.


6 randomly chosen events from a sample of ERs + NRs with centroid distance < 6 mm





(arXiv.2406.07538)

Camera coincidences rejected in ITO

- The ITO's 2ns timing resolution allows for separation of events that pileup due to the camera's 8.33ms exposure time.
- The example on the right looks Migdal-like in the camera.
- In the ITO we see these are two separate
 events which occurred ~few ms apart.
- The ITO is vital for rejecting these coincidences.
 - If an event does not appear in the ITO, we reject it outright as a coincidence.

Summary

- The MIGDAL experiment aims to perform an unambiguous observation of the Migdal effect.
- Perpendicular optical and charge based planar readouts are combined to achieve 3D reconstruction of tracks.
- The detector is performing as designed.
- We have acquired several weeks of stable DD data. We will collect more.
- Data analysis of the two science runs is ongoing (stay tuned).
- Potential backgrounds appear to be as expected.
- YOLOv8 object identification allows fast feedback and event selection (arXiv.2406.07538).

Backup

Papers

- A. Migdal Ionizatsiya atomov pri yadernykh reaktsiyakh, ZhETF, 9, 1163-1165 (1939).
- 2. A. Migdal Ionizatsiya atomov pri α i β raspade, ZhETF, 11, 207-212 (1941) .
- 3. M.S. Rapaport, F. Asaro and I. Pearlman Kshell electron shake-off accompanying alpha decay, PRC 11, 1740-1745 (1975).
- 4. M.S. Rapaport, F. Asaro and I. Pearlman L- and M-shell electron shake-off accompanying alpha decay, PRC 11, 1746-1754 (1975).
- 5. C. Couratin et al., First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+ Ions, PRL 108, 243201 (2012).
- 6. X. Fabian et al., Electron Shakeoff following the β + decay of Trapped 19Ne+ and 35Ar+ trapped ions, PRA, 97, 023402 (2018).

Т. 9 Журнал экспериментальной и теоретической физики Вып. 10

нонизация атомов при ядерных реакциях

A. Mungas

В работе вычисалется заряд новов отдачи при дежинтеграциях, сопровождающихся пере-

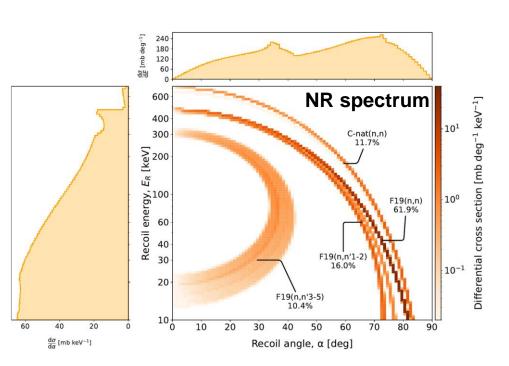
При ядерных столкновениях или девинтеграциях, сопропождающихся при мамах скоростих дара отдами последнее успешает узлачь в деятроны, и инизация не происходит; наоборот, при очень бол ших скоростих ядро надетательно в облочки, не узлачка ее за собол. При не съдинемо больники внертиях отдами нонизация происходят тольно в наружных, слабо сыяванных обломиях.

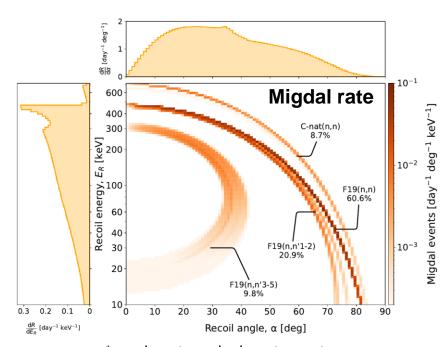
При столкновениях атомов с нейтронами такой вескимы является единственным, приводящим к заметяюй ношквации (негрудно убедителься, что вонзация, обусловленная магнитимы и специфическим дасривым вазымодействием нейтрона с электроном, крайне мала — соответствующее сечение в первом случае порядка 10 ²⁵ сей, во втором — порядка 10 ²⁶ сей).

Вероятность такой нонизации может быть очень просто рассчитава. Так китеросен саучай больших засртай эдич и, следовательно, больших скоростей пладоцей частицы, то врем соударения с даром много меньше засктронных перводов. Следовательно, изменение скорости дара происходит резко неадмабатически, так что Ψ — функция влектроннов — не может изменяться в время столкновения.

Нетрудно, кроме того, вядеть, что расстояние, на которое смещается ядро за время столкновения, имеет порядок M_1 , P_1 , T_2 , M_2 , — масса надающей частицы, M_2 — масса ядра, P_2 —прицельное расстояние. Так как при заметной вередаче энергии P много меньше размеров электронных оболочек, то ядроможно считать не сместившимся за время удара.

Аля получении вероитности вообуждения али ионизации нужно исколную Φ -функцию атома равловить по собственным функциям движущегося лара. Можно посутиять исколько инвис, а именно перейти к системе координат, в которой адро поконтен; тогда собственными функциям вадачи будут обмимие функции поконщегоси ядра. Начальная функция Φ_{ϕ} при втом преобразуется в вырамение:

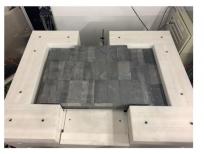

Действительно, миожитель е^{ме 1} представляет собой Ф-функцию центра инсрции оболочки, который и старой системе координат покоился, а в новой движется со скоростью v, равной по величиие и противопложной по направлению скорости ядра.


Пусть конечное состояние атома в рассматриваемой системе координат дается функцией $\theta_1(r_1, r_2, \dots, r_d)$. Так как ядро за время удара не сместилось, то координаты влектронов в θ_1 отсчитаны от той же точки, что и в θ_2 . Вероятыесть перехода в конечное состояние дается выражениям:

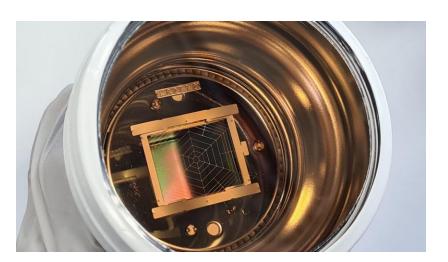
$$\mathbf{W} = \left[\left[\mathbf{\Psi}_{1} e^{\mathbf{q} \cdot \mathbf{r}_{1}} \mathbf{\Psi}_{0} d\mathbf{r}_{1} \dots d\mathbf{r}_{f} \right]^{2},$$

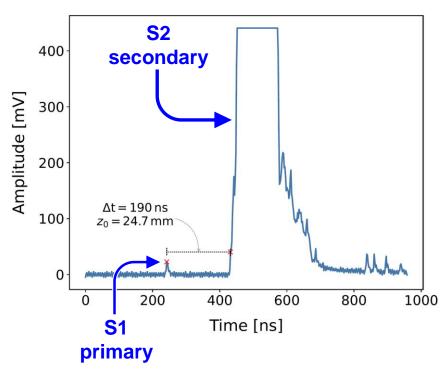
CF4 nuclear recoil spectrum & Migdal rates

- Higher rate of NRs at lower energies (Astropart. Phys. 151 (2023) 102853).
- Higher rate of Migdal events at higher energies (fluorine kinematic end-point).


*per day at nominal neutron rate

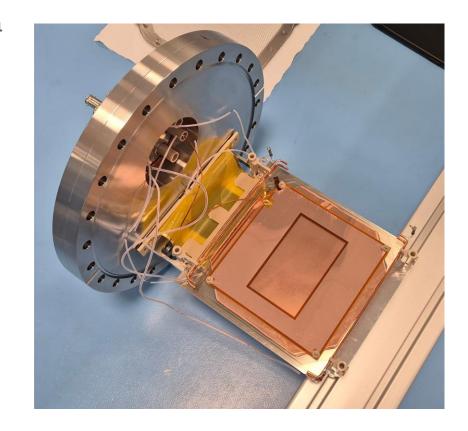
Assembly at NILE



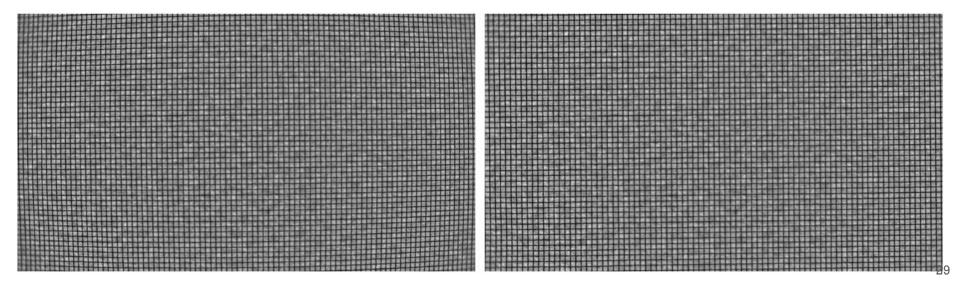


PMT

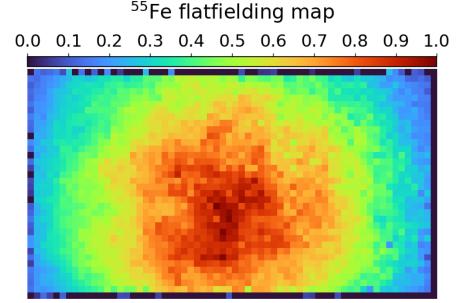
- The PMT is used to trigger the DAQ (on S2 signal) and obtain an absolute depth coordinate.
- The depth is calculated from the S1-S2 Δt and the drift velocity in the gas.
- PMT is digitised at 2 ns with 8-bit resolution.



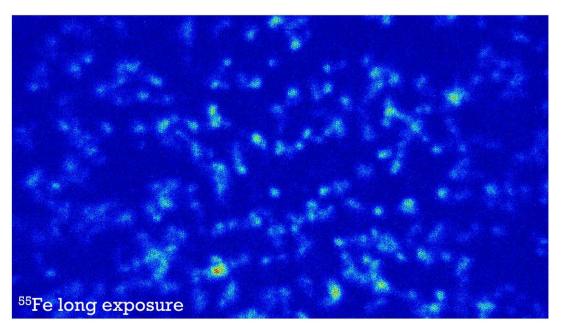
Hamamatsu R11410 PMT

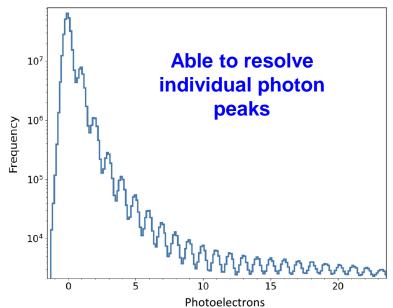

GEM mask

- Avoid tracks falling outside the camera field of view by attaching a mask to the TPC.
- This blocks NRs from being amplified outside the 80 x 45 mm² camera area.
- The ITO readout now sees the same active area as the camera.
- We also have a 100 x 60 mm² mask.
 - We plan to test this configuration soon.

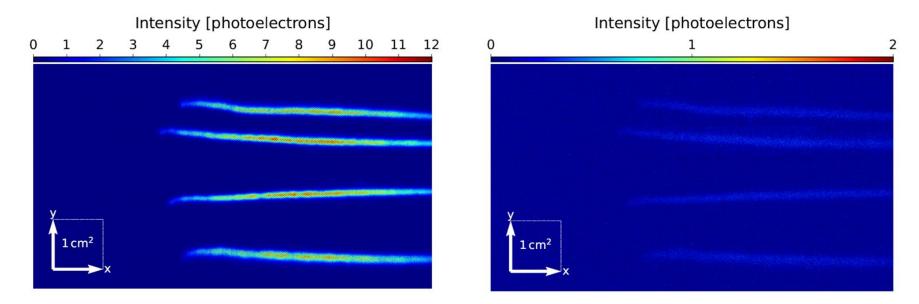

Optical distortion correction

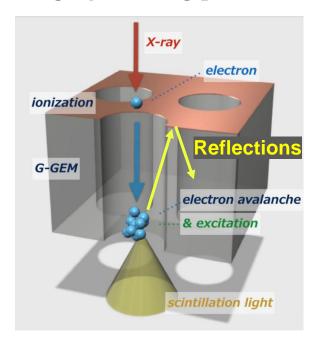
- We characterise the distortion by imaging a regular grid and measuring the deflection of the lines as a function of radial distance.
- Barrel distortion in the camera can be parameterised by a 5th-order polynomial.
- Imaging closer to the focal plane increases distortion.

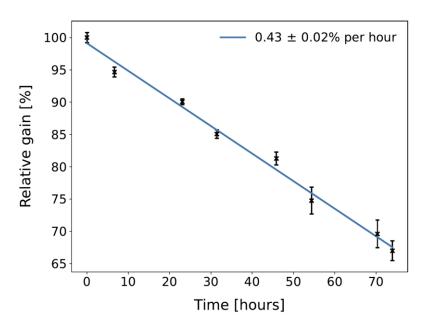

Flat field correction in the camera


- We use an ⁵⁵Fe source as an energy calibration.
- Interactions occur over the entire volume, so we can perform a positiondependent calibration.
- Below is a map of the relative intensities of ⁵⁵Fe events.

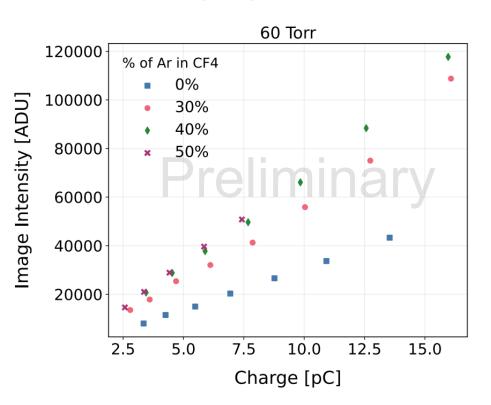
Capabilities of the ORCA Quest

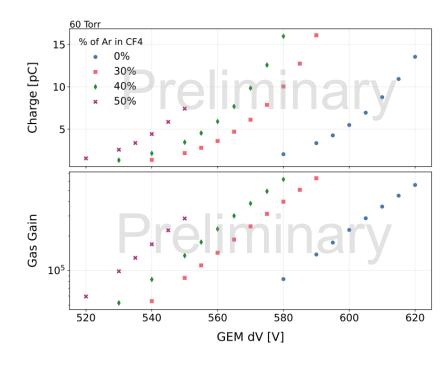

- The ORCA Quest is capable of 'photon-number resolving' at the cost of a slower,
 5 Hz readout rate.
- Using this mode risks pileup of events, only useful for low-noise calibration.


Camera afterglow


- The ORCA Quest appears to feature an 'afterglow' in the subsequent frame following bright events.
- In the frame which follows each high-energy track, we see an afterglow of ~1 photoelectron in many pixels.
- This appears to be a persistence for {N} frames, rather than {T} exposure time.
- We can simply mask bright areas in the subsequent frame to avoid confusion.

Glass GEM considerations


- Light can refract in the glass substrate and reflect on the copper surfaces.
- We experience a continuous reduction in the gas gain while operating with highly ionising particles, requires regular voltage adjustment to maintain gain.



Noble gas mixtures

• We plan to operate with DD neutrons in a fraction of argon gas later in 2024.

Light yield enhanced with addition of Ar.

L. Millins (MICDAL), 16th Pisa Meeting on Advanced Detectors

May 31 2024, Isola d'Elba

MIGDAL upgrade

- Higher resolution digitiser (CAEN V1730).
 - o 14-bit instead of 8-bit.
- Doubling the number of ITO strips to 240, increasing spatial resolution in the ITO subsystem.
 - 0.417 mm instead of 0.833 mm.
- Additional amplification stage.
 - Testing addition of a third GEM (kapton, glass, or ceramic).
 - Testing different structures (M-ThGEMs).
- Reduction of reflections.
 - Opaque GEMs.
 - Considering dark-coating TPC.

