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The Migdal effect

● Direct DM experiments invoke the Migdal effect to probe energies below their nuclear recoil threshold.

● Predicted by A. Migdal in the 1930s/1940s and first observed in radioactive decays in the 1970s – but 

not yet recorded in nuclear scattering.

● Migdal In Galactic Dark mAtter expLoration (MIGDAL) Experiment

○ We aim to achieve the unambiguous observation (and characterisation) of the Migdal effect using 

a low-pressure optical TPC and high-energy neutrons.

Migdal topology involves an electron and a nuclear

recoil originating from the same vertex.
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The MIGDAL Experiment

● High-yield neutron generator

○ D-D: 2.47 MeV (109 n/s)

○ Defined, collimated beam

● Low-pressure gas: 50 Torr of CF4

○ Visible light + VUV scintillator

○ Extended particle tracks, Long attenuation length for 
gamma rays

○ Can add fraction of noble gases relevant to dark 
matter searches (Ar / Xe)

● Optical TPC

○ Amplification: 2x glass-GEMs

○ Optical: camera + photomultiplier tube

○ Charge: 120 ITO anode strips

● Electron and nuclear recoil tracks

○ Migdal: NR+ER tracks, common vertex

○ NR and ER tracks have opposite dE/dx profiles

○ 5 keV electron threshold (55Fe calibration)
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Combining optical and charge readout

EHD f/0.85 25 mm lens

anode strips

Transparent, segmented ITO anode
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● Low-noise qCMOS 

camera

● RMS noise: 

○ 0.41e– @ 120 Hz

○ 0.21e– @ 5 Hz

● 12-bit resolution

ORCA Quest
● 120 strips connected to 60 fast 

commercial amplifiers (LMH6629)

● 0.6 mm strips with 0.8 mm pitch, 

10 cm x 10 cm active area

● Digitised with 2 ns sampling rate 

at 8-bit resolution with Acqiris 

DAQ

120 strips
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ER from 55Fe x-ray interaction 

(5.9 keV)



NILE facility at Rutherford Appleton Laboratory, UK

● Bespoke DD and DT neutron irradiation facility located within Target Station 2 at ISIS 
Neutron and Muon Source, RAL

● Concrete bunker with interlocked access

● MIGDAL experiment sits in the centre of the bunker

To gas 

system

Concrete

HDPE
DD neutron 

generatorLead

MIGDAL 

detector
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Shielded and unshielded renders of the experiment
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Characterising the neutron and NR rate

● Expected 2.6⨉105 n/s entering the active volume, but measured 6⨉104 n/s.

● Our collimator was designed around an 8 mm neutron production spot diameter within the DD 

generator, but the measured diameter was much closer to 25 mm.

● This reduced the NR event rate in the active volume from ~15 Hz to ~5 Hz.

● The camera was pulled closer to the active volume to capture more light. 

○ This further reduced the contained NR rate in the ROI to ~2 Hz, which we observe in the data.
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Science operations

● First science run 

○ 17/07/23 – 03/08/23

● Second science run

○ 15/01/24 – 06/02/24

● Data taken using D-D neutron generator recorded 

continuously during 10-hour long shifts. 

○ 50% of our data remains blinded.

○ Approximately 500,000 NRs in total.

● Calibration runs with 55Fe every 3 hours.

● We replaced the gas medium once/twice per week.
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Summary of gain and gain resolution 

over the course of first science run.



Backgrounds

● We do not expect to be limited by background.

○ We wanted to confirm this by measuring the 

sideband outside the energy and spatial ROI.

● Secondary NRs could create a split topology, 

similar to Migdal.

○ We can exclude these with kinematic and 

parametric constraints.

● Compton scatters of 𝛄-rays from neutron inelastic 

scattering can create events with NR + ER.

○ This is the main source of background.
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19F inelastic 𝛄-ray + 

Compton scatter (ITO readout)

(Astropart. Phys. 151 (2023) 102853)

https://doi.org/10.1016/j.astropartphys.2023.102853


Backgrounds
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19F inelastic 𝛄-ray + 

Compton scatter (ITO readout)

Eliminated by applying an energy threshold

Eliminated by ITO timing resolution

(Astropart. Phys. 151 (2023) 102853)

● We do not expect to be limited by background.

○ We wanted to confirm this by measuring the 

sideband outside the energy and spatial ROI.

● Secondary NRs could create a split topology, 

similar to Migdal.

○ We can exclude these with kinematic and 

parametric constraints.

● Compton scatters of 𝛄-rays from neutron inelastic 

scattering can create events with NR + ER.

○ This is the main source of background.

https://doi.org/10.1016/j.astropartphys.2023.102853


Measuring the neutron inelastic 𝛄-ray sideband

● We have constructed a detailed GEANT4 detector geometry to calculate the expected 
number of 𝛄-rays.

● The number of simulated and measured NR + ER coincidences is consistent.

● The expected (and measured) number of ERs produced within 3 mm of an NR vertex is 
very small (good news).

Detailed Geant4 

geometry
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Beginning the search for Migdal with machine learning

● YOLOv8 is a state-of-the-art object detection algorithm.

● Object detection simultaneously classifies and localizes 

(with bounding boxes) any number of objects of interest 

in an image.

● Pipeline provides online deliverables, including mixed-

field particle ID and NR energy spectra in real time.
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YOLOv8 for data reduction

● YOLO currently operates on 
the images from the camera 
subsystem.

● YOLO finds several ERs within 
the vicinity of NRs.

● Keeping only frames with a 
single ER and NR within 6 mm 
of each other reduces a sample 
of 20 million frames to 1,641. 

● Are these all Migdal? No.

● Camera exposure time 
(8.33 ms) is long enough for 
(few) events to pileup.

● We can resolve this with the 
ITO subsystem.
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6 randomly chosen events from a sample of

ERs + NRs with centroid distance < 6 mm

(arXiv.2406.07538)

https://arxiv.org/abs/2406.07538


Camera coincidences rejected in ITO

● The ITO's 2ns timing resolution allows for 

separation of events that pileup due to the 

camera's 8.33ms exposure time.

● The example on the right looks Migdal-like in 

the camera.

● In the ITO we see these are two separate 

events which occurred ~few ms apart.

● The ITO is vital for rejecting these 

coincidences.

○ If an event does not appear in the ITO, we reject it 

outright as a coincidence.

t0

t0 + 5 ms

1

2

Camera

ITO
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Summary

● The MIGDAL experiment aims to perform an unambiguous observation of the Migdal 
effect.

● Perpendicular optical and charge based planar readouts are combined to achieve 3D 
reconstruction of tracks.

● The detector is performing as designed.

● We have acquired several weeks of stable DD data. We will collect more.

● Data analysis of the two science runs is ongoing (stay tuned).

● Potential backgrounds appear to be as expected.

● YOLOv8 object identification allows fast feedback and event selection 
(arXiv.2406.07538).
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Backup
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Papers
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CF4 nuclear recoil spectrum & Migdal rates
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● Higher rate of NRs at lower energies (Astropart. Phys. 151 (2023) 102853).

● Higher rate of Migdal events at higher energies (fluorine kinematic end-point).

NR spectrum
Migdal rate

*per day at nominal neutron rate
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Assembly at NILE
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PMT 

● The PMT is used to trigger the DAQ (on S2 signal) and obtain an absolute depth coordinate.

● The depth is calculated from the S1-S2 𝚫t and the drift velocity in the gas.

● PMT is digitised at 2 ns with 8-bit resolution.

S1

primary

S2

secondary
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GEM mask

● Avoid tracks falling outside the camera 

field of view by attaching a mask to the 

TPC. 

● This blocks NRs from being amplified 

outside the 80 x 45 mm2 camera area.

● The ITO readout now sees the same 

active area as the camera.

● We also have a 100 x 60 mm2 mask.

○ We plan to test this configuration soon.
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Optical distortion correction

● We characterise the distortion by imaging a regular grid and measuring the 

deflection of the lines as a function of radial distance.

● Barrel distortion in the camera can be parameterised by a 5th-order polynomial.

● Imaging closer to the focal plane increases distortion.
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Flat field correction in the camera

● We use an 55Fe source as an energy calibration.

● Interactions occur over the entire volume, so we can perform a position-

dependent calibration.

● Below is a map of the relative intensities of 55Fe events.
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Capabilities of the ORCA Quest

● The ORCA Quest is capable of ‘photon-number resolving’ at the cost of a slower, 

5 Hz readout rate.

● Using this mode risks pileup of events, only useful for low-noise calibration.

Able to resolve 

individual photon 

peaks
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Camera afterglow

● The ORCA Quest appears to feature an ‘afterglow’ in the subsequent frame following bright events.

● In the frame which follows each high-energy track, we see an afterglow of ~1 photoelectron in many 

pixels.

● This appears to be a persistence for {N} frames, rather than {T} exposure time.

● We can simply mask bright areas in the subsequent frame to avoid confusion.
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Glass GEM considerations

● Light can refract in the glass substrate and reflect on the copper surfaces.

● We experience a continuous reduction in the gas gain while operating with 

highly ionising particles, requires regular voltage adjustment to maintain gain.
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Reflections
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Noble gas mixtures

● We plan to operate with DD neutrons in a 

fraction of argon gas later in 2024.

34

Light yield enhanced with addition of Ar. 

L. Millins (MIGDAL),

16th Pisa Meeting on Advanced Detectors 

May 31 2024, Isola d’Elba
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MIGDAL upgrade

● Higher resolution digitiser (CAEN V1730).
○ 14-bit instead of 8-bit.

● Doubling the number of ITO strips to 240, 

increasing spatial resolution in the ITO 

subsystem.
○ 0.417 mm instead of 0.833 mm.

● Additional amplification stage.
○ Testing addition of a third GEM (kapton, glass, or 

ceramic).

○ Testing different structures (M-ThGEMs).

● Reduction of reflections.
○ Opaque GEMs.

○ Considering dark-coating TPC.
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