Electron capture decays in the LUX-ZEPLIN (LZ) experiment

Olivia Valentino on behalf of the LZ Collaboration

DMUK Meeting - London January 7, 2025

IMPERIAL

The LUX-ZEPLIN (LZ) experiment

LZ features a 7-tonne dual-phase Xe time projection chamber (TPC) read out by two arrays of VUV PMTs

Particles scattering in the active volume cause nuclear or electron recoils and deposit energy via:

- **Excitation** \rightarrow prompt scintillation (S1)
- Ionisation → electron clouds drift upwards to gas phase and produce electroluminescence (S2)

Skin and Outer Detector (OD) serve as veto systems

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

1st hypothesis: Leakage from standard ER events in long acquisitions, e.g. radon progeny*

*See Simran's talk

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

1st hypothesis: Leakage from standard ER events in long acquisitions, e.g. radon progeny*

*See Simran's talk

LXe TPCs are able to discriminate background-like **electron recoils (ER)** from signal-like **nuclear recoils (NR)** via the <u>charge-to-light</u> signals ratio

Recent datasets showed evidence of abnormal leakage from the ER band into the NR band

1st hypothesis: Leakage from standard ER events ir long acquisitions, e.g.

2nd hypothesis: Double electron captures (DEC) of ¹²⁴Xe with enhanced recombination

Electron capture decays in LXe-based DM searches

The XELDA^[1] experiment has shown that electron capture (EC) decays of ¹²⁷Xe appear more NR-like

This is attributed to enhanced recombination at the decay site

[1] D. J. Temples et al., " *Physical Review D* 104.11 (2021): 112001.

Double electron captures in LXe-based in DM searches

It is expected that DECs would exhibit <u>at least</u> the same enhancement in recombination as single ECs from very ionisation-dense sites DEC of ¹²⁴Xe: the **rarest decays known!**

- $T_{1/2} = (1.09 \pm 0.14_{stat} \pm 0.05_{sys}) \times 10^{22} \text{ yr}^{[1, 2]}$
- 0.095% natural abundance

In current and future DM searches these decays become a non-negligible backgrounds:

- Exposures are getting longer
- Some decay modes fall into the WIMP region of interest (ROI)

Subshells	Energy $[keV]$	Capture probability [%]
KK	64.62	74.13-74.15
KL_1	37.05	18.76-18.83
KM_1	32.98	3.83 - 3.84
KN_1	32.11	0.83 - 0.85
KO ₁	31.93	0.13
L_1L_1	10.04	1.22
L_1M_1	6.01	0.49
L_1N_1	5.37	0.27
M_1M_1	2.05	0.13

O. Nitescu, et al., arXiv preprint arXiv:2402.13784 (2024).

[1] Xenon collaboration, <u>Nature</u>, 2019, 568.7753: 532-535.
[2] J Aalbers, et al., <u>Journal of Physics G: Nuclear and Particle</u> *Physics* 52.1 (2024): 015103.

Double electron captures in LXe-based in DM searches

Challenge: The "NR-likeness" of these decays would appear as a leakage of ER events in the NR band, which can affect our sensitivity to dark matter if not properly modeled

Understanding of this effect is crucial!

Aim: exploit non-negligible rate of single EC in LZ to evaluate the enhanced recombination they exhibit and inform that of ¹²⁴Xe DEC decays

Electron capture decays in xenon isotopes

¹²⁵Xe and ¹²⁷Xe are produced via neutron capture They undergo EC to excited state of iodine with:

- T_{1/2}= 36.4 d for ¹²⁷Xe
- $T_{1/2}$ = 16.9 h for ¹²⁵Xe

The signal is formed of:

- Nuclear de-excitation gamma(s)
- Atomic cascade

Subshell	Energy $[keV]$	Capture probability [%]
K_1	33.1694	84.398 (34)
L_1	5.1881	12.011(17)
L_2	4.8521	$0.33752\ (49)$
M_1	1.0721	2.444(10)
M_2	0.9305	0.07168(17)
N_1	0.1864	0.609(5)
N_2	0.1301	0.01697~(12)
O_1	0.0136	0.1100(17)
O_2	0.0038	0.001972 (27)

Isolating EC events in LZ

To isolate the atomic cascade in single EC we have two selection strategies:

- 1. Multiple scatter selection
- 2. Single scatter selection

Isolating EC events in LZ

To isolate the atomic cascade in single EC we have two selection strategies:

- 1. Multiple scatter selection (MS)
- 2. Single scatter selection
- If the gamma ray is high in energy it will travel enough in LXe to create a distinct photo-absorption site from the cascade
- We only select events where the gamma goes downwards, making the cascade the first of the S2s to reach the liquid surface

Isolating EC events in LZ

To isolate the atomic cascade in single EC we have two selection strategies:

- 1. Multiple scatter selection
- 2. Single scatter selection (SS)
- If the capture occurs at the edge of the TPC the gamma ray can escape and is absorbed in the skin, yielding a **skin tag**
- Resulting event in TPC is a **single scatter**
- Trade-off between wall backgrounds and statistics

Intermezzo: obtaining charge yields

Charge yields are obtained via:

$$Q_y = \frac{S2C}{g_2E}$$

 C_{2}

True energy of vacancy
shell

Results are then compared to charge yield of a β of equivalent energy taken from NEST: $Q_y^{\rm EC}/Q_y^{\beta}$

<u>Corrected S2 area:</u> distribution of S2 size fitted with skewed Gaussians to obtain the mean.

Skewness attributed to Auger and fluorescence components in vacancy relaxation

Comparison to β for K-shells is more complex as they can be **multi-site**:

• ~28 keV <u>X-ray</u> + L shell vacancy

Results: charge suppression

Good agreement between SS and MS measurement, except for K shell in WS2024

Yellow bands: multisite expectation

- <u>Upper limit:</u> X-ray modeled as β
- Lower limit: X-ray modeled as γ
- In both: L vacancy modeled as β

No evident trend with field in this range for M and L shells

Results

DEC modeling in WS2024

LL and LM ¹²⁴Xe DEC components were included in the WS2024 background model:

4.2

4.0

Log₁₀S2c [phd] 9.6 9.7 8

3.2

3.0

2.8

Q^L/Q^β

• We expect 7.1 (LM) + 12.3 (LL) = 19.4 counts + 20% uncertainty

For LM events $Q^{LM}/Q^{\beta} = Q^{L}/Q^{\beta} = 0.87$

For LL events **Q**^{LL} was floated:

```
0.65 < Q^{LL}/Q^{\beta} < 0.87
x 2 ionisation
```

density

Best fit parameter: $Q^{LL}/Q^{\beta} = 0.70 \pm 0.04$

Conclusions

Take away messages:

- Observed an unexpected leakage of from ER band into the NR band
- Managed to explain this by DEC decays of ¹²⁴Xe with enhanced recombination
- Modelled it exploiting *in situ* measurements of single ECs

This study underlines the importance of DEC decays of ¹²⁴Xe as a background for xenon-based dark matter searches. This is remarkable!

Paper in preparation on this topic:

Measurements and models of enhanced recombination following inner-shell vacancies in liquid xenon

Thank you!

Isolating EC events in LZ: MS selection

- Similar selection strategy for WS2022 and WS2024 dataset
- K, L and M shell populations are isolated in both runs

Isolating EC events in LZ: SS selection

- Black points are L shell captures of ¹²⁵Xe and ¹²⁷Xe within chosen energy range (tan)
- Distinct shift downwards can be observed in the population from the ER background (grey) into the NR band (red)

Summary table

LZ Preliminary

Run	Source	$Q_y^{ m EC}~[e^-/{ m keV}]$	$Q_y^{ m EC}/Q_y^eta$
LZ WS2022 (193 V/cm)	M (MS) L (MS) L (SS) K (MS) K (SS)	$\begin{array}{l} 55.75 \pm 0.26_{\rm stat} \pm 1.13_{\rm sys} \\ 28.68 \pm 0.13_{\rm stat} \pm 0.58_{\rm sys} \\ 28.92 \pm 0.38_{\rm stat} \pm 0.45_{\rm sys} \\ 21.38 \pm 0.04_{\rm stat} \pm 0.31_{\rm sys} \\ 21.46 \pm 0.12_{\rm stat} \pm 0.30_{\rm sys} \end{array}$	$\begin{array}{l} 0.920 \pm 0.004_{\rm stat} \pm 0.019_{\rm sys} \\ 0.876 \pm 0.004_{\rm stat} \pm 0.036_{\rm sys} \\ 0.883 \pm 0.012_{\rm stat} \pm 0.036_{\rm sys} \\ 0.918 \pm 0.002_{\rm stat} \pm 0.004_{\rm sys} \\ 0.921 \pm 0.005_{\rm stat} \pm 0.006_{\rm sys} \end{array}$
LZ WS2024 (96.5 V/cm)	M (MS) L (MS) L (SS) K (MS) K (SS)	$\begin{array}{l} 54.59 \pm 1.61_{\rm stat} \pm 2.49_{\rm sys} \\ 27.81 \pm 0.22_{\rm stat} \pm 0.98_{\rm sys} \\ 28.79 \pm 1.76_{\rm stat} \pm 0.84_{\rm sys} \\ 19.62 \pm 0.06_{\rm stat} \pm 0.67_{\rm sys} \\ 18.25 \pm 0.24_{\rm stat} \pm 0.48_{\rm sys} \end{array}$	$\begin{array}{c} 0.913 \pm 0.027_{\rm stat} \pm 0.031_{\rm stat} \\ 0.877 \pm 0.007_{\rm stat} \pm 0.034_{\rm sys} \\ 0.908 \pm 0.056_{\rm stat} \pm 0.029_{\rm sys} \\ 1.036 \pm 0.003_{\rm stat} \pm 0.030_{\rm sys} \\ 0.964 \pm 0.013_{\rm stat} \pm 0.021_{\rm sys} \end{array}$
LUX (180 V/cm)	N (MS) M (MS) L (MS) K (MS)	$\begin{array}{c} 75.3 \pm 6.5_{\rm stat} \pm 5.2_{\rm sys} \\ 61.4 \pm 0.5_{\rm stat} \pm 4.3_{\rm sys} \\ 30.8 \pm 0.1_{\rm stat} \pm 2.1_{\rm sys} \\ 22.72 \pm 0.03_{\rm stat} \pm 1.58_{\rm sys} \end{array}$	$\begin{array}{c} 1.151 \pm 0.099_{\rm stat} \pm 0.080_{\rm sys} \\ 1.127 \pm 0.009_{\rm stat} \pm 0.079_{\rm sys} \\ 0.928 \pm 0.003_{\rm stat} \pm 0.063_{\rm sys} \\ 0.984 \pm 0.001_{\rm stat} \pm 0.068_{\rm sys} \end{array}$
XELDA (258 V/cm)	L (SS)	$32.87 \pm 0.07_{\rm stat} \pm 0.37_{\rm sys}$	$0.909 \pm 0.003_{\rm stat} \pm 0.007_{\rm sys}$
XELDA (363 V/cm)	L (SS)	$33.63 \pm 0.03_{\rm stat} \pm 0.33_{\rm sys}$	$0.917 \pm 0.001_{\rm stat} \pm 0.009_{\rm sys}$

Backup

Impact on WIMP searches

Sensitivity study of **1,000 live day exposure** was performed

Two possibilities explored:

- 1. Modelling LL-capture like an L-capture ———
- 2. Modelling LL with best-fit, but:
 - Including MM as M
 - Including LM & LN as L
 - Varying branching ratios by ±40%

In each case, the worst impact is a $\sim 10\%$ reduction in sensitivity for > 30 GeV/c² WIMP masses • 1000d simulated data $(Q_y^{LL}/Q_y^{\beta} = 0.70)$ --- ¹²⁴Xe $(Q_y^{LL}/Q_y^{\beta} = 0.70)$ — Background model $(Q_u^{LL}/Q_u^{\beta} = 0.877)$ — ¹²⁴Xe $(Q_u^{LL}/Q_u^{\beta} = 0.877)$

$$u_{0}^{2} = \frac{10^{2}}{10^{4}} + \frac{10^{2}}{10$$

Backup

Energy spectrum of ¹²⁴Xe

Energy spectrum of LL and LM components of ¹²⁴Xe compared to spectrum of 40 GeV and 1000 GeV WIMP

Counts are arbitrarily normalised independently

The Thomas-Imel box model

This model places the recombination inside a box of size 2a in which all charges are uniformly distributed

Recombination is controlled by the ξ parameter via:

$$Q_y = \frac{\ln(1+\xi)}{W\xi \left(1+N_{\rm ex}/N_i\right)} \qquad \xi = \frac{N_i \alpha}{4a^2 v_d}$$

 $\boldsymbol{\xi}$ is related to the ionisation density

We assume that ECs and β interactions produce the same N_{i} , within different boxes of sizes $a_{L} a_{M}$ and a_{β}

The difference in recombination is wholly attributed to differences in ionization density (and box size)