QUEST-DMC: superfluid helium-3 bolometry for low mass dark matter searches

Elizabeth Leason University of Oxford DMUK 07.01.2024

QUEST-DMC

QUEST

	EXPERIMENTAL	Robert Smith, Lizzie Blooomfield
ROYAL HOLLOWAY UNIVERSITY	Dr Samuli Autti	Dr Michael Thompson
OF LONDON	Prof. Andrew Casey	Dr Viktor Tsepelin
Lancaster	Dr. Paolo Franchini	Dr Dmitry Zmeev
110	Prof. Richard Haley	Dr Vladislav Zavyalov
University of Sussey	Dr. Petri Heikkinen	Tineke Salmon, Luke Whitehead
University of Sussex	Dr Sergey Kafanov	THEORY
	Dr Ashlea Kemp	Dr Neda Darvishi
	Dr. Elizabeth Leason	Prof. Mark Hindmarsh
UNIVERSITY OF	Dr. Lev Levitin	Prof. Stephan Huber
OXFORD	Prof. Jocelyn Monroe	Dr Asier Lopez-Eiguren
LIVERSITY OF	Dr Theo Noble	Prof. John March-Russell
	Dr Jonathan Prance	Dr Juri Smirnov
Science & Technology	Dr Xavier Rojas	Prof. Stephen West
	Prof. John Saunders	Dr. Quang Zhang

Engineering and Physical Sciences Research Council

Science and Technology **Facilities Council**

EMP

Quantum Enhanced Superfluid Technologies for Dark Matter and Cosmology

1. Motivation

2. Detector concept

3. Progress and outlook

Why superfluid helium 3?

- Cooper pairing of He atoms superfluid <2mK
- Energy ∆~10⁻⁷eV required to break Cooper pairs and give single quasiparticles (QPs)

Why superfluid helium 3?

- Cooper pairing of He atoms superfluid <2mK
- Energy ∆~10⁻⁷eV required to break Cooper pairs and give single quasiparticles (QPs)

Unpaired nucleon:

➢Spin dependent dark matter – nucleon interaction

βm

3. Bolometry

- nanowire driven by AC current in vertical B field
- measure increase in resonance width from damping

Bolometer measurements

Frequency sweep – find Α. 0.25 resonant frequency and base Change [Hz] 0.50 change [Hz] 0.50 width from Lorentzian fit Midth Width real (in phase) T₀ 10 0.05 imaginary (out of phase) 3.10 0.00 3.05 8 Δf 0.0 3.00 [2.95 2.90 2.85 Xiqtp 2.85 6 4 2,80 Z [Ohm] 2.75 2.70 250 0 -2 -4 770 780 790 810 820 830 800 Frequency [Hz]

Apply pulse finding and fitting

Energy

- Very low heat capacity at low temperature – sensitive bolometer
- Linewidth follows heat capacity, simple width change to energy conversion: $E \propto \Delta(\Delta f)$
- Calibration using second heater wire
 - drive on resonance above pair breaking velocity to create QPs
 - detect response in thermometer wire
- Also use radiation sources e.g. ⁵⁵Fe

Low noise readout

- Noise in V_0 measurement determines energy threshold
- Two readout schemes:
 - **conventional** passive cryo-transformer room temperature lockin noise dominates
 - **SQUID** preamplifier, higher gain SQUID noise dominates
- Simulated energy thresholds: 39 eV with conventional readout, 0.71 eV with SQUID readout <u>QUEST-DMC:Eur. Phys. J. C 84, 248 (2024)</u>

11

Experiment Progress

Lancaster Run (2023)

Ran for 8 months achieving temperatures down to 0.15mK

Stycast bolometers with (4.5 μ m) thermometer wire and (13.5 μ m) heater wire, conventional readout

Calibration: change in width of thermometer wire vs (known) injected heater power to find calibration coefficient: $P = K (\Delta f - \Delta f_0)T$

RHUL SQUID readout tests

June-Dec. 2024: copper cell containing 400nm and 4500nm VWRs operated ~0.3mK

400nm wire

14 copper holder sample magnet nuclear demagnetisation dilution fridge bolometer cell

RHUL bolometer

- ✓ operation of 400nm wires in bolometer cell
 - SQUID readout circuit
 - 5 day stable run time (at 0.3mK)
- noise characterisation and optimisation for SQUID readout
- ✓ heater wire calibrations

Heater wire calibration

With SQUID readout scheme can drive both wires hard enough to generate QPs and detect proportional response with other wire

A) 400nm detector (4500nm heater)

B) 4500nm detector (400nm heater)

Outlook

Plans

Lancaster run ...

- folder copper cell
- SQUID readout and increased exposure *main DM search run*

RHUL run ...

- Machined cell in copper puck
- 400nm and 4.5um nanowires
- SQUID readout noise optimisation
- ⁵⁵Fe source calibration

1. Superfluid helium-3 ultra low threshold potential, **10**-7 eV gap

2. Proof of principle bolometer operation

- nanowire fabrication
- bolometer DAQ and analysis
- readout optimisation
- calibration strategy

3. Analysis and experimental runs in progress!

Backup

Dilution refrigeration

4He – 3He dilution gives 2.3mK base temperature

- Phase separation in 3He 4He mix at low temperatures, higher entropy in dilute phase
- 3He atoms removed from dilute phase replaced from concentrated phase – increase in entropy removes heat from surroundings: $\dot{Q} = 84\dot{n}_3T^2$ [\dot{n}_3 = 3He flow rate across phase boundary]

Mixing chamber

Mixing

chamber

Heat exchangers

Adiabatic demagnetisation

- Following pre-cool to ~mK
- Adiabatic demagnetisation for single shot cooling to ~100uK
- Copper spins more ordered at high B field, entropy increases when field decreases

Nuclear

stage

Damping force & Andreev scattering

Effect unique to superfluid helium-3 increase QP damping force by 3 orders of magnitude

- Fluid flow and relative motion of wire can increase/decrease the gap.
- Only quasiparticles from in front and quasiholes from behind can transfer momentum |2pF|, increasing the damping.

Ref https://www.annualreviews.org/doi/pdf/10.1146/annurev-conmatphys-031016-025411

Readout schemes

 Conventional – cold transformed plus lockin amplifier

- SQUID readout scheme:
 - Voltage applied inductively through Mx
 - SQUID current sensor detects current li in wire (with impedance Z(f), contact resistance R, and SQUID input coil inductance Li)
 - SQUID connected to lockin via room temp. flux-locked-loop electronics

Expected backgrounds

Background	Events/cell/day [0-10keV]
Cosmic rays	3.31
Radiogenic	2.61
PP neutrino	4.76e-7
CN neutrino	2.01e-9

- Cosmic rays CRY + Geant4, no shielding and 90% veto efficiency
- Radiogenic material screening and Geant4

