DarkSide-20k: Status and Prospects

DMUK King's College London 7 January 2025

Conner Roberts on behalf of the DarkSide-UK community

conner.roberts@manchester.ac.uk

The University of Manchester

07 January 2025

DarkSide-20k: Overview

Global Argon Dark Matter Collaboration (GADMC) Comprised of 400+ people across 14 countries.

UNIVERSITY OF

MANCHESTER

1824

MiniCLEAN DarkSide-50 ArDM **DEAP-3600**

DarkSide-20k: Overview

- LAr dual-phase TPC experiment designed to detect the scattering ٠ interaction of WIMPs from the dark matter halo.
- **50t underground Argon**(UAr). ٠
- Light readout: $27m^2$ cryogenic low-noise SiPMs. ٠
- Nominal runtime of 10 years. ٠
- at least 250--500 tn yr exposure ٠

UK groups building 25% of silicon

CERN +

detector readout, characterisation

- Located in Hall C at LNGS, Italy at a depth of 1400m (3400m water equivalent).
- DarkSide-20k installation has started with the protoDUNE-like cryostat.
- TPC components in production.
- Installation of UK Photodetectors starting in 2025.
- Construction is complete and commissioning runs in 2026.
- Physics data is planned to start in 2027.

DarkSide-20k: Detector Structure

Neutron (inner) Veto 32 t of UAr.

- Enclosed in Stainless Steel vessel and HDPE neutron shield.
- Equipped with SiPMs covering 5 m² from UK groups.
- Light yield: 2 PE/keV.

Dual-phase TPC

- 50 t of UAr (20 t fiducial).
- Two optical planes covering 21 m^2 .
- S1 and S2 yield is 10 PE/keV and 20 PE/e⁻ respectively.

Cosmogenic (Outer) Veto

- 650 t of Atmospheric Argon (AAr)
- Membrane "ProtoDUNE-like" cryostat 8x8x8 m^3
- Sparsely instrumented with SiPMs.

DarkSide-20k: Light Readout with SiPMs

DarkSide-UK: Veto Photodetector Module

DarkSide-UK: Veto Photodetector Unit

on budget.

07 January 2025

DarkSide-20k: WIMP signal and backgrounds

- Single scatter NR event
- Energy recoil between 1 and 100 keV

Background requirements for 10-year exposure:

- <0.1 neutrons surviving veto
- <0.05 from β and γ

Background Source	Mitigation strategy	
$Ar^{39}eta$ decay	Underground Argon + pulse shape discrimination	
γ from rock and γ ,e from material	Pulse shape discrimination + material selection	
Radiogenic neutron (α , n) reaction in detector material	Material screening and selection, TPC fiducial volume and Neutron Veto to reject neutron signal	
Surface Contamination due to Rn progeny	Surface cleaning, reducing air exposure and handling in Rn controlled environments	
Muon induced background	Cosmic Veto	
Neutrino coherent scatter	Irreducible	

DarkSide-20k: High Mass WIMP sensitivity

The Global Argon Dark Matter Collaboration. DarkSide-20k Technical Design Report. Rapp. tech. INFN, 2021

The SD model, which is canonically considered invisible to argon target experiments is not.

Even in the isospin-conserving case, our projections show DarkSide-20k will be more sensitive than xenon for SD interactions for $m_x > 100$ GeV.

Isospin-violating dark matter at liquid noble detectors:

new constraints, future projections, and an exploration of target complementarity: https://arxiv.org/pdf/2302.05458

The DarkSide-20k Collaboration. DarkSide-20k sensitivity to light dark matter particles. Commun Phys 7, 422 (2024). https://doi.org/10.1038/s42005-024-01896-z

To Low Mass WIMPs

Ionisation Signal (S2)-Only Analysis

- Dual-phase TPC drifts and extracts single ionisation electrons in the gas with near 100% efficiency.
- Signal amplified a further x20 exploiting electroluminescence in the gas phase.
- By exploiting S2 signal, Darkside-20k can reach **sub-keV** recoil energy thresholds.

σsı

Nucleon

Matter

10⁻⁴⁴ Дагу

10-45

1.2

2.0

3.0 4.0

 $M_{\gamma} [GeV/c^2]$

6.0

10.0

DAMA/LIBRA 2008

LAr Neutrino Floor

DarkSide-20k: Low mass analysis background model

DarkSide-20k: Low mass WIMPs sensitivity (GeV/c²)

07 January 2025

The DarkSide-20k Collaboration. DarkSide-20k sensitivity to light dark matter particles. *Commun Phys* **7**, 422 (2024). https://doi.org/10.1038/s42005-024-01896-z

DarkSide-20k: Low mass WIMPs sensitivity (GeV/c²)

Including Migdal Effect

After nuclear recoil, the surrounding electron cloud gets accelerated, releasing de-excitation ionisation.

Including Migdal, the most stringent limits between 40 MeV/c² and 5 GeV/c².

Projects >1 order of magnitude improvement with respect to current experiments. 07 January 2025

The DarkSide-20k Collaboration. DarkSide-20k sensitivity to light dark matter particles. *Commun Phys* **7**, 422 (2024). https://doi.org/10.1038/s42005-024-01896-z

DarkSide-20k: Light Dark Matter (MeV/c²)

Elastic scattering of Atomic Electrons

Light dark matter can be sub-GeV fermion or scalar boson interacting atomic electrons via a vector mediator.

Mediator can be light ($m_{med} << m_{\chi}$) or heavy ($m_{med} >> m_{\chi}$)

Projects >1 order of magnitude improvement with respect to current experiments.

07 January 2025

The DarkSide-20k Collaboration. DarkSide-20k sensitivity to light dark matter particles. *Commun Phys* **7**, 422 (2024). https://doi.org/10.1038/s42005-024-01896-z

DarkSide-20k: Astrophysical multi-messaging

- DS-20k will join the SuperNova Early Warning System 2.0 (SNEWS2.0)
- DarkSide-20k will be sensitive to core-collapse supernova neutrinos through the coherent elastic neutrino-nucleus scattering and charge currents.

• Backgrounds from detector bulk, ³⁹Ar and single electrons.

Sensitivity of future liquid argon dark matter search experiments to core-collapse supernova neutrinos - arXiv:2011.07819

SOLAIRE

Cryostat Support Structure

Cryostat Insulation Laye

Copper Shield

HOPE Shie

Outer Detector

Inner Detector

- **Boulby Underground Laboratory**: Hosted in the UK with contributions from 25 institutes across 10 countries.
- **UK institutes**: Boulby Lab, Daresbury, Edinburgh, Imperial, KCL, Liverpool, Manchester, Oxford, QMUL, RAL, RHUL, Warwick
- Detector Design: World-leading sensitivity to
 MeV–GeV dark matter with a 9-ton UAr target and
 60 m³ cryostat.
- **Future Prospects**: Awaiting funding approval, construction planned for 2025, with transformative low-mass dark matter searches anticipated.
- Data Taking: Ultimate physics by 2030.

15

Conclusion

DarkSide-20k

- Wide-reaching physics: looks at a range of dark matter models at a range of proposed masses.
- Key contributions: PDU production (25%), testing, background mitigation, tooling, and instrumentation.
- Expanding the science program and preparing for data-taking.

• SOLAIRE

• Manchester is leading the proposal, design, and construction of a worldleading low-mass dark matter detector in the UK.

Backup

Neutron Veto

- Neutrons are moderated in the acrylic shell and then captured on Hydrogen.
- Hydrogen emits gammas of 2.2 MeV and interact with the argon in the Neutron veto.
- LAr scintillation light is shifted and detected by 120 PDUs.

Systematic uncertainties

Ne	w	Source uncertainty	Affected	
			components	
Ì	е	5% on the exposure	All	
1	pn	15% on ³⁹ Ar activity	³⁹ Ar	
	plit	15% on ⁸⁵ Kr activity	⁸⁵ Kr	Main bkg
	B	20% on SE normalization	SE	Main DKg
	A	10% on activity from PDMs	PDMs	components and
		10% on activity from the vessel	Vessel	ER ionization
		10% on activity from the TPC	TPC 🖌	yield →
		10% on neutrinos normalization	Neutrinos	Dominant
Γ		atomic exchange and screening	³⁹ Ar	systematic
		atomic exchange and screening	⁸⁵ Kr	uncertainties &
Shape	ape	1% on the ³⁹ Ar-decay <i>Q</i> -value	³⁹ Ar	constrained by
	Shi	0.4% on the ⁸⁵ Kr-decay Q-value	⁸⁵ Kr	the fit
	-	SE modelling	SE	
		ER ionization response 🖌	All backgrounds	
			but $CE\nu NS$, SE	
		NR ionization response	WIMP, $CE\nu NS$	

SOLAIRE: Detector Concept

- Innovative wall-less TPC design
 - Reduced material near central DM search region.
- Dual and single-phase LAr volumes.
 - Gas pocket created with diving bell instrumented with DS20k SiPMs.
 - Single electric field to drift electrons throughout volume.

