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introduction and overview
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case for (thermal) axion inflation1

thanks to a shift symmetry, the potential remains “flat” — even

in the presence of thermal corrections, evading known obstacles2

yet the friction can be large, offerring for a mechanism to remove

energy from the inflaton and heat up the standard model plasma

V0(ϕ) ≃ m
2
f
2
a

[

1− cos

(
ϕ

fa

)]

fa ≈ 1.25mpl , m ≈ 1.09× 10
−6

mpl

[within 2σ of planck data]

1
K. Freese, J.A. Frieman and A.V. Olinto, Natural inflation with pseudo Nambu-

Goldstone bosons, PRL 65 (1990) 3233; ...
2
J. Yokoyama and A.D. Linde, Is warm inflation possible?, hep-ph/9809409
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difference between abelian and non-abelian cases

L ⊃
1

2
∂
µ
ϕ∂µϕ− V0(ϕ)−

ϕχ

fa
, χ ≡

α ǫµνρσF c
µνF

c
ρσ

16π

abelian axion inflation displays remarkable tachyonic instability...3

⇒ but backreaction effects are large & difficult to control?

in the non-abelian case, gauge fields self-interact strongly...

⇒ perhaps so much so that gauge fields thermalize? (not ϕ)

⇒ memory of their history is lost (no mode functions)

⇒ life could be simpler again?

3
M.M. Anber and L. Sorbo, Naturally inflating on steep potentials through

electromagnetic dissipation, 0908.4089
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remarks on thermalization

“proving” thermalization theoretically is notoriously difficult

for heavy ion collisions, ≫ 103 papers, from preheating-type

simulations4 to advanced perturbative computations5 to ads/cft

now even heavy quarks (mc > 5Tmax) suggested to equilibrate6

all this is supported by that, empiricially, hydrodynamics works

4
e.g. D. Bödeker, K. Rummukainen, QCD plasma instability and thermalisation at

heavy ion collisions, 0711.1963
5

e.g. Y. Fu, J. Ghiglieri, S. Iqbal, A. Kurkela, Thermalization of non-Abelian gauge
theories at next-to-leading order, 2110.01540

6
e.g. F. Capellino et al, Hydrodynamization of charm quarks ..., 2312.10125
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our philosophy

introduce a temperature-like parameter T , but keep it dynamical,

viewing it as a parametrization of phase space distributions

(technically: we assume that the energy released from ϕ is

distributed ergodically within the gauge sector)

if T ≪ H, where H is the Hubble rate, T plays no practical

role for ϕ [but it serves as a “seed” for the subsequent reheating]

our temperature is “classical”, and often much below the

gibbons-hawking temperature H/(2π) of de sitter spacetime
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non-abelian theory has a dimensionful parameter, ΛIR

interaction between the inflaton and gauge fields:

L ⊃
1

2
∂
µ
ϕ∂µϕ− V0(ϕ)−

ϕχ

fa
, χ ≡

α ǫµνρσF c
µνF

c
ρσ

16π

gauge field self-interactions are parametrized by α = g2

4π ⇔ ΛIR;

for energy scale ω ≫ ΛIR or temperature 2πT ≫ ΛIR,

α ≃
6π

11Nc

ln
−1

[√
ω2 + (2πT )2

ΛIR

]

confinement sets in if max{ω, 2πT} ≪ 2πΛIR
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prototypical scenarios7 for a small and large ΛIR
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deep in the weak regime, T

plays no role during inflation

at large ΛIR, we can have

πT ≫ m, but Υ≪ H

7
H. Kolesova, ML, S. Procacci, Maximal temperature of ... dark sectors, 2303.17973
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basic equations and the friction Υ
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equations for the background solution (ϕ = ϕ̄ + δϕ)

¨̄ϕ + (3H + Υ) ˙̄ϕ + ∂ϕV ≃ 0 ,

ėr + 3H
(
er + pr − T∂TV

)
− T ˙(∂TV ) ≃ Υ ˙̄ϕ

2

consistent with overall energy conservation e+3H(e+ p) = 0,

where e = er + ˙̄ϕ2/2+V −T∂TV and p = pr + ˙̄ϕ2/2−V

the friction Υ transfers energy from ˙̄ϕ to “radiation” (er, pr)
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dispersive representation of Υ

Υ originates from a coupling between ϕ and gauge fields

L ⊃ −
ϕχ

fa
, χ ≡

α ǫµνρσF c
µνF

c
ρσ

16π

through linear response theory (ϕ ↔ χ), the influence of χ on

ϕ can be related8,9 to the “spectral function” of χ alone,

Υ(ω) =
1

f2
a

ρ(ω)

ω

this incorporates both vacuum decays ϕ→ gg (for ω ≫ 2πT )

and plasma scatterings ϕ + X → Y (for ω ≪ 2πT )

8
L.D. McLerran, E. Mottola and M.E. Shaposhnikov, Sphalerons and axion dynamics

in high-temperature QCD, PRD 43 (1991) 2027
9
ML and S. Procacci, ... inflation with complete medium response, 2102.09913
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2-point correlation functions

ρ(ω) ≡

∫ ∞

−∞

dt e
iωt

∫

x

〈1

2

[
χ(t, x) , χ(0, y)

]〉

T

CS(ω) ≡

∫ ∞

−∞

dt e
iωt

∫

x

〈1

2

{
χ(t, x) , χ(0, y)

}〉

T

the two time orderings are related to each other,

CS(ω)
|ω|≪T
=

2T ρ(ω)

ω

the symmetric ordering has formally a classical limit,

C
(cl)
S (ω) ≡ lim

~→0
CS(ω)
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therefore Υ(ω) can be estimated via classical simulations

generate gauge configurations at t = 0 with boltzmann weight

Z
(cl)

=

∫

DUiDEi δ(G) exp

{

−
1

g2Ta

∑

x

[
∑

i,j

Tr
(
1− Pij

)
+

∑

i

Tr
(
E
2
i
)
]}

evolve fields to t > 0 with equations of motion

a ∂tUi(x) = iEi(x)Ui(x) ,

a ∂tE
b
i (x) = 2

∑

j 6=i

ImTr
{
T

b[
Pji(x) + P−ji(x)

]}

then measure the 2-point correlator of χ, and fourier-transform
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example: strong sphaleron rate10,11

f
2
a 2TΥ(0) = Γsph = lim

ω→0
CS(ω) = lim

tmax→∞

∫ tmax

−tmax
dt CS(t)
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⇒ the limit ag2T → 0 is universal (hopefully?)

10
“direct method” and extension to ω ≥ 0: ML, L. Niemi, S. Procacci, K. Rummukainen,

Shape of the hot topological charge density spectral function, 2209.13804
11

“cooled”: G.D. Moore, M. Tassler, The sphaleron rate in SU(N) ..., 1011.1167
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the full frequency dependence
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⇒ we observe a “transport dip” instead of a “transport peak”

sphaleron rate→
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afterwards, lattice needs to be “matched” onto continuum

(i) for IR regime, ω < g2T , rescale observables by debye mass

squared, to account for interactions between IR and UV modes

(ii) for UV asymptotics, ω ∼ 1/a, subtract the lattice result and

add the full continuum result, both within perturbation theory

CS

∣
∣
cont
≃

m2
D,latt

m2
D,cont

[

CS

∣
∣
latt
−CS,UV

∣
∣
latt

]

︸ ︷︷ ︸

∆C
(cl)
S

+CS,UV

∣
∣
cont
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this leads to a reconstructed continuum expression

Υ(ω) ≃
dAα

2

f2
a

[ dA ≡ N2
c − 1, κ ≃ 1.5, c IR ≃ 106, cM ≃ 5.1 ]

×

{

κ (αNcT )
3

︸ ︷︷ ︸
sphaleron rate

1 + ω2

(c
IR
α2N2

c T )2

1 + ω2

(c
M
αNcT )2

+
[

1 + 2nB

(ω

2

)] πω3

(4π)4
︸ ︷︷ ︸

ϕ→gg

}

here nB is the bose distribution for gauge boson bose enhancement

then need to fix ω — not obvious, since want an equation in t

⇒ forward-backward fourier transforms?

in practice, we have considered 0 ≤ ω ≤ m, with ω = m being

the proven choice for reheating
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application: gravitational waves
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overview

• contrary to common lore, there is a thermal contribution to the

tensor spectrum12 — not flat but with a characteristic f3
0 shape

• from the reheating stage, there could be an additional GHz

signal, which might be constrained via Neff

• the presence of a non-abelian plasma with Tmax > Tc forces

us to think about subsequent (dark sector?) phase transitions

all are “interesting”, but none pose strong constraints

on the benchmarks considered (i.e. no over-production)

12
Y. Qiu and L. Sorbo, ... tensor perturbations in warm inflation, 2107.09754

19



sketch
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reminder: prototypical scenarios
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[have this in mind first]
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f3
0 shape: basic ingredients

the non-abelian plasma has non-trivial dissipative coefficients, like

the shear viscosity η ∼ T 3/α2 and the bulk viscosity ζ

the fluctuation-dissipation theorem asserts that dissipation is

balanced by hydrodynamic fluctuations, whose autocorrelator is

proportional to the same dissipative coefficients13

〈T
ij
hydro

(x)T
mn
hydro(y) 〉 = 2T

[

η
(
δ
im

δ
jn

+δ
in

δ
jm)

+

(

ζ−
2η

3

)

δ
ij
δ
mn

]
δ (4)(x− y)
√
− det g

such a local white noise leads to a characteristic “hydrodynamic”

shape of the gravitational wave spectrum

13
E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2, secs. 88-89; J.I. Kapusta,

B. Müller and M. Stephanov, Relativistic theory of hydrodynamic fluctuations with
applications to heavy-ion collisions, 1112.6405
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f3
0 shape: general result for the tensor power spectrum14

PT(k) =
32 k3

πm2
pl

{

vacuum part
︷ ︸︸ ︷

H2(1 + k2τ2
e )

2k3

+
32π

m2
pl

∫ τe

−∞

dτi G
2
R(τe, τi, k)T (τi) η(τi)

︸ ︷︷ ︸
from thermal fluctuations

}

[τe = end of inflation]

14
P. Klose, ML, S. Procacci, Gravitational wave background from vacuum and thermal

fluctuations during axion-like inflation, 2210.11710
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f3
0 shape: largest thermal contribution comes from ∼ Tmax

δPT(k)

δ (Tη(τi))
=

322 k3

m4
pl

G
2
R(τe, τi, k)︸ ︷︷ ︸

constant for k≪aH

multiplying PT with the post-inflation transfer function15 yields

ΩGWh
2
⊃ A

(
f0

Hz

)3(Tη

m4
pl

)

max

,
(
Tη

)

max
∼

T 4
max

α2
min

,

with the estimate A ∼ 10−9 for ΛIR ≪ mpl ⇒ “so and so”

15
assuming frequencies that re-enter the horizon within the radiation-dominated epoch

24



Neff: at πT ≫ m, 2→ 2 single-graviton (h) production

this could be from SM,16 BSM,17 or inflaton processes18,19

gluon graviton

inflaton

16
J. Ghiglieri, ML, Gravitational wave background from Standard Model physics:

qualitative features, 1504.02569; J. Ghiglieri, G. Jackson, ML, Y. Zhu, Gravitational wave
background from Standard Model physics: complete leading order, 2004.11392

17
A. Ringwald, J. Schütte-Engel, C. Tamarit, 2011.04731; L. Castells-Tiestos,

J. Casalderrey-Solana, 2202.05241; F. Muia, F. Quevedo, A. Schachner, G. Villa,

2303.01548; M. Drewes, Y. Georis, J. Klaric, P. Klose, 2312.13855; ...
18

P. Klose, ML, S. Procacci, Gravitational wave background from non-Abelian reheating
after axion-like inflation, 2201.02317

19
e.g. N. Bernal, S. Cléry, Y. Mambrini, Y. Xu, Probing Reheating with Graviton

Bremsstrahlung, 2311.12694; A. Tokareva, Gravitational Waves from Inflaton Decay and
Bremsstrahlung, 2312.16691; ...
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Neff: double-graviton (hh) rates can be added20
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20
J. Ghiglieri, J. Schütte-Engel, E. Speranza, Freezing-In Gravitational Waves,

2211.16513; J. Ghiglieri, ML, J. Schütte-Engel, E. Speranza, Double-graviton production
from Standard Model plasma, 2401.08766
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Neff: the signal is observable only at very high Tmax
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phase transitions: effect of matter domination

if Tmax > Tc, there is a (dark sector?) thermal phase transition

if Υ≪ H∗ ≡ {Hubble rate at phase transition point}, inflaton

oscillations lead to a matter domination era, which suppresses

any inside-horizon gravitational wave signal21,22

h
2
Ωgw ≃ 1.65×10

−5 ge
gs

(
100

gs

)1/3( Υ

H∗

)(
min{Υ,Γ}

H∗

)2/3 2

3(1 + 2w∗)

egw,∗

er+ϕ,∗

[Υ = inflaton friction , Γ = equilibration rate for dark sector]

21
e.g. J. Ellis, M. Lewicki and V. Vaskonen, ... gravitational waves produced in a

strongly supercooled phase transition, 2007.15586; F. Ertas, F. Kahlhoefer and C. Tasillo, ...

listening to phase transitions in hot dark sectors, 2109.06208
22

H. Kolesova, ML, Update on gravitational wave signals from post-inflationary phase
transitions, 2311.03718
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phase transitions: suppression if Υ≪ H∗
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at the largest f0, phase transitions merge with scatterings!
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what should be done better?
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there are many intriguing features, but...

⇒ could something more be said about the thermalization

(separately of the plasma, and of ϕ)?

⇒ if Tmax < Tc (confinement phase), the important coefficients

Υ and η become inaccurate — how to improve on them?

⇒ how much are curvature perturbations modified from cold-

inflation predictions when approaching the strong regime?23

⇒ we looked at pure gauge; how about the effect of fermions?24

23
e.g. M. Mirbabayi and A. Gruzinov, Shapes of non-Gaussianity in warm inflation,

2205.13227; G. Ballesteros, A. Perez Rodŕıguez and M. Pierre, Monomial warm inflation

revisited, 2304.05978; G. Montefalcone, V. Aragam, L. Visinelli and K. Freese, WarmSPy: a
numerical study of cosmological perturbations in warm inflation, 2306.16190

24
e.g. K.V. Berghaus, P.W. Graham, D.E. Kaplan, G.D. Moore and S. Rajendran, Dark

energy radiation, 2012.10549; M. Drewes and S. Zell, On Sphaleron Heating in the Presence
of Fermions, 2312.13739
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backup slide
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why is the temperature stationary at early times?

suppose that ∆e from inflaton compensates for the hubble

dilution, so that ėr − T ˙(∂TV ) ≃ 0

ėr + 3H
(
er + pr − T∂TV

)
− T ˙(∂TV ) ≃ Υ ˙̄ϕ

2

e+p = Ts
⇒ 3Tstats︸ ︷︷ ︸

strongly T -dependent

≃
Υ

H

(∂ϕV )2

(3H + Υ)2
︸ ︷︷ ︸
weakly T -dependent

a solution exists and represents a stable fixed point!25

25
including the strong sphaleron rate: K.V. Berghaus, P.W. Graham and D.E. Kaplan,

Minimal warm inflation, 1910.07525; W. DeRocco, P.W. Graham and S. Kalia, Warming
up cold inflation, 2107.07517
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