# towards understanding non-abelian axion inflation

mikko laine

aec, itp, university of bern

# introduction and overview

### case for (thermal) axion inflation<sup>1</sup>

thanks to a shift symmetry, the potential remains "flat" — even in the presence of thermal corrections, evading known obstacles<sup>2</sup>

yet the friction can be large, offerring for a mechanism to remove energy from the inflaton and heat up the standard model plasma

$$egin{aligned} V_0(arphi) &\simeq m^2 f_a^2 \left[1-\cos{\left(rac{arphi}{f_a}
ight)}
ight] \ T_a &pprox 1.25\,m_{
m pl} \ , \quad m &pprox 1.09 imes 10^{-6}\,m_{
m pl} \end{aligned}$$

[within  $2\sigma$  of planck data]

<sup>&</sup>lt;sup>1</sup> K. Freese, J.A. Frieman and A.V. Olinto, *Natural inflation with pseudo Nambu-Goldstone bosons*, PRL 65 (1990) 3233; ...

<sup>&</sup>lt;sup>2</sup> J. Yokoyama and A.D. Linde, *Is warm inflation possible?*, hep-ph/9809409

#### difference between abelian and non-abelian cases

$$\mathcal{L} \supset \frac{1}{2} \partial^{\mu} \varphi \, \partial_{\mu} \varphi - V_0(\varphi) - \frac{\varphi \, \chi}{f_a} \,, \quad \chi \equiv \frac{\alpha \, \epsilon^{\mu\nu\rho\sigma} F^c_{\mu\nu} F^c_{\rho\sigma}}{16\pi}$$

abelian axion inflation displays remarkable tachyonic instability...<sup>3</sup>  $\Rightarrow$  but backreaction effects are large & difficult to control?

in the non-abelian case, gauge fields self-interact strongly...  $\Rightarrow$  perhaps so much so that gauge fields thermalize? (not  $\varphi$ )  $\Rightarrow$  memory of their history is lost (no mode functions)  $\Rightarrow$  life could be simpler again?

<sup>&</sup>lt;sup>3</sup> M.M. Anber and L. Sorbo, *Naturally inflating on steep potentials through electromagnetic dissipation*, 0908.4089

### remarks on thermalization

"proving" thermalization theoretically is notoriously difficult

for heavy ion collisions,  $\gg 10^3$  papers, from preheating-type simulations<sup>4</sup> to advanced perturbative computations<sup>5</sup> to ads/cft

now even heavy quarks ( $m_c > 5T_{\rm max}$ ) suggested to equilibrate<sup>6</sup>

all this is supported by that, empiricially, hydrodynamics works

<sup>6</sup> e.g. F. Capellino et al, Hydrodynamization of charm quarks ..., 2312.10125

<sup>&</sup>lt;sup>4</sup> e.g. D. Bödeker, K. Rummukainen, *QCD plasma instability and thermalisation at heavy ion collisions*, 0711.1963

<sup>&</sup>lt;sup>5</sup> e.g. Y. Fu, J. Ghiglieri, S. Iqbal, A. Kurkela, *Thermalization of non-Abelian gauge theories at next-to-leading order*, 2110.01540

### our philosophy

introduce a temperature-like parameter T, but keep it dynamical, viewing it as a parametrization of phase space distributions

(technically: we assume that the energy released from  $\varphi$  is distributed ergodically within the gauge sector)

if  $T \ll H$ , where H is the Hubble rate, T plays no practical role for  $\varphi$  [but it serves as a "seed" for the subsequent reheating]

our temperature is "classical", and often much below the gibbons-hawking temperature  $H/(2\pi)$  of de sitter spacetime

#### non-abelian theory has a dimensionful parameter, $\Lambda_{\mathrm{IR}}$

interaction between the inflaton and gauge fields:

$$\mathcal{L} \supset \frac{1}{2} \partial^{\mu} \varphi \, \partial_{\mu} \varphi - V_0(\varphi) - \frac{\varphi \, \chi}{f_a} \,, \quad \chi \equiv \frac{\alpha \, \epsilon^{\mu\nu\rho\sigma} F^c_{\mu\nu} F^c_{\rho\sigma}}{16\pi}$$

gauge field self-interactions are parametrized by  $\alpha = \frac{g^2}{4\pi} \Leftrightarrow \Lambda_{\text{IR}}$ ; for energy scale  $\omega \gg \Lambda_{\text{IR}}$  or temperature  $2\pi T \gg \Lambda_{\text{IR}}$ ,

$$\alpha \simeq \frac{6\pi}{11N_{\rm c}} \ln^{-1} \left[ \frac{\sqrt{\omega^2 + (2\pi T)^2}}{\Lambda_{\rm IR}} \right]$$

confinement sets in if  $\max\{\omega, 2\pi T\} \ll 2\pi \Lambda_{\mathrm{IR}}$ 

### prototypical scenarios $^7$ for a small and large $\Lambda_{\mathrm{IR}}$



<sup>&</sup>lt;sup>1</sup> H. Kolesova, ML, S. Procacci, Maximal temperature of ... dark sectors, 2303.17973

# basic equations and the friction $\Upsilon$

equations for the background solution ( $\varphi = \bar{\varphi} + \delta \varphi$ )

$$\begin{split} \ddot{\varphi} + (3H + \Upsilon) \dot{\bar{\varphi}} + \partial_{\varphi} V &\simeq 0 \;, \\ \dot{e}_r + 3H \big( e_r + p_r - T \partial_T V \big) - T (\partial_T^{\phantom{1}} V) &\simeq \Upsilon \dot{\bar{\varphi}}^2 \end{split}$$

consistent with overall energy conservation e+3H(e+p)=0, where  $e=e_r+\dot{\bar{\varphi}}^2/2+V-T\partial_T V$  and  $p=p_r+\dot{\bar{\varphi}}^2/2-V$ 

the friction  $\Upsilon$  transfers energy from  $\dot{\bar{\varphi}}$  to "radiation"  $(e_r,p_r)$ 

### dispersive representation of $\Upsilon$

 $\Upsilon$  originates from a coupling between  $\varphi$  and gauge fields

$$\mathcal{L} \supset -\frac{\varphi \chi}{f_a}, \quad \chi \equiv \frac{\alpha \epsilon^{\mu\nu\rho\sigma} F^c_{\mu\nu} F^c_{\rho\sigma}}{16\pi}$$

through linear response theory ( $\varphi \leftrightarrow \chi$ ), the influence of  $\chi$  on  $\varphi$  can be related<sup>8,9</sup> to the "spectral function" of  $\chi$  alone,

$$\Upsilon(\omega) = \frac{1}{f_a^2} \frac{\rho(\omega)}{\omega}$$

this incorporates both vacuum decays  $\varphi \to gg$  (for  $\omega \gg 2\pi T$ ) and plasma scatterings  $\varphi + X \to Y$  (for  $\omega \ll 2\pi T$ )

<sup>9</sup> ML and S. Procacci, ... inflation with complete medium response, 2102.09913

<sup>&</sup>lt;sup>8</sup> L.D. McLerran, E. Mottola and M.E. Shaposhnikov, *Sphalerons and axion dynamics in high-temperature QCD*, PRD 43 (1991) 2027

### 2-point correlation functions

$$\begin{split} \rho(\omega) \; &\equiv \; \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \; \int_{\mathbf{x}} \Bigl\langle \frac{1}{2} \bigl[ \chi(t, \mathbf{x}) \, , \, \chi(0, \mathbf{y}) \bigr] \Bigr\rangle_T \\ C_{\mathrm{S}}(\omega) \; &\equiv \; \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \; \int_{\mathbf{x}} \Bigl\langle \frac{1}{2} \bigl\{ \chi(t, \mathbf{x}) \, , \, \chi(0, \mathbf{y}) \bigr\} \Bigr\rangle_T \end{split}$$

the two time orderings are related to each other,

$$C_{\mathrm{S}}(\omega) \stackrel{|\omega| \ll T}{=} \frac{2T \ \rho(\omega)}{\omega}$$

the symmetric ordering has formally a classical limit,

$$C_{\rm S}^{\rm (cl)}(\omega) \equiv \lim_{\hbar \to 0} C_{\rm S}(\omega)$$

#### therefore $\Upsilon(\omega)$ can be estimated via classical simulations

generate gauge configurations at t = 0 with boltzmann weight

$$Z^{(\mathsf{cl})} = \int \mathcal{D}U_i \, \mathcal{D}\mathcal{E}_i \, \delta(G) \exp\left\{-\frac{1}{g^2 T a} \sum_{\mathbf{x}} \left[\sum_{i,j} \operatorname{Tr}\left(\mathbb{1} - P_{ij}\right) + \sum_i \operatorname{Tr}\left(\mathcal{E}_i^2\right)\right]\right\}$$

evolve fields to t > 0 with equations of motion

$$\begin{split} a \,\partial_t U_i(x) &= i \mathcal{E}_i(x) U_i(x) , \\ a \,\partial_t \mathcal{E}_i^b(x) &= 2 \sum_{j \neq i} \operatorname{Im} \operatorname{Tr} \left\{ T^b \left[ \, P_{ji}(x) + P_{-ji}(x) \, \right] \right\} \end{split}$$

then measure the 2-point correlator of  $\chi$ , and fourier-transform



<sup>10</sup> "direct method" and extension to  $\omega \ge 0$ : ML, L. Niemi, S. Procacci, K. Rummukainen, Shape of the hot topological charge density spectral function, 2209.13804 <sup>11</sup> "cooled": G.D. Moore, M. Tassler, The sphaleron rate in SU(N) ..., 1011.1167

### the full frequency dependence



 $\Rightarrow$  we observe a "transport dip" instead of a "transport peak"

### afterwards, lattice needs to be "matched" onto continuum

(i) for IR regime,  $\omega < g^2 T$ , rescale observables by debye mass squared, to account for interactions between IR and UV modes

(ii) for UV asymptotics,  $\omega \sim 1/a$ , subtract the lattice result and add the full continuum result, both within perturbation theory

$$C_{\mathsf{S}}|_{\mathrm{cont}} \simeq \frac{m_{\mathrm{D,latt}}^2}{m_{\mathrm{D,cont}}^2} \underbrace{\left[C_{\mathsf{S}}|_{\mathrm{latt}} - C_{\mathsf{S,UV}}|_{\mathrm{latt}}\right]}_{\Delta C_{\mathsf{S}}^{(\mathrm{cl})}} + C_{\mathsf{S,UV}}|_{\mathrm{cont}}$$

### this leads to a reconstructed continuum expression



here  $n_{
m B}$  is the bose distribution for gauge boson bose enhancement

then need to fix  $\omega$  — not obvious, since want an equation in  $t \Rightarrow$  forward-backward fourier transforms?

in practice, we have considered  $0 \leq \omega \leq m$  , with  $\omega = m$  being the proven choice for reheating

# application: gravitational waves

#### overview

• contrary to common lore, there is a thermal contribution to the tensor spectrum<sup>12</sup> — not flat but with a characteristic  $f_0^3$  shape

 $\bullet$  from the reheating stage, there could be an additional GHz signal, which might be constrained via  $N_{\rm eff}$ 

• the presence of a non-abelian plasma with  $T_{\rm max} > T_{\rm c}$  forces us to think about subsequent (dark sector?) phase transitions

all are "interesting", but none pose strong constraints on the benchmarks considered (i.e. no over-production)

<sup>&</sup>lt;sup>12</sup> Y. Qiu and L. Sorbo, ... tensor perturbations in warm inflation, 2107.09754

sketch



### reminder: prototypical scenarios



[have this in mind first]

## $f_0^3$ shape: basic ingredients

the non-abelian plasma has non-trivial dissipative coefficients, like the shear viscosity  $\eta \sim T^3/\alpha^2$  and the bulk viscosity  $\zeta$ 

the fluctuation-dissipation theorem asserts that dissipation is balanced by hydrodynamic fluctuations, whose autocorrelator is proportional to the same dissipative coefficients<sup>13</sup>

$$\left\{ T_{\text{hydro}}^{ij}(x) T_{\text{hydro}}^{mn}(y) \right\} = 2T \left[ \eta \left( \delta^{im} \delta^{jn} + \delta^{in} \delta^{jm} \right) + \left( \zeta - \frac{2\eta}{3} \right) \delta^{ij} \delta^{mn} \right] \frac{\delta^{(4)}(x-y)}{\sqrt{-\det g}} d\xi$$

such a local white noise leads to a characteristic "hydrodynamic" shape of the gravitational wave spectrum

<sup>&</sup>lt;sup>13</sup> E.M. Lifshitz and L.P. Pitaevskii, *Statistical Physics, Part 2*, secs. 88-89; J.I. Kapusta, B. Müller and M. Stephanov, *Relativistic theory of hydrodynamic fluctuations with applications to heavy-ion collisions*, 1112.6405

 $f_0^3$  shape: general result for the tensor power spectrum  $^{14}$ 

$$\mathcal{P}_{\mathrm{T}}(k) = \frac{32 k^{3}}{\pi m_{\mathrm{pl}}^{2}} \left\{ \frac{\mathcal{H}^{2}(1+k^{2}\tau_{e}^{2})}{2k^{3}} + \frac{32\pi}{m_{\mathrm{pl}}^{2}} \int_{-\infty}^{\tau_{e}} \mathrm{d}\tau_{i} G_{\mathrm{R}}^{2}(\tau_{e},\tau_{i},k) T(\tau_{i}) \eta(\tau_{i})}{\mathrm{from thermal fluctuations}} \right\}$$

 $[\tau_e = {\rm end} ~ {\rm of} ~ {\rm inflation}]$ 

<sup>&</sup>lt;sup>14</sup> P. Klose, ML, S. Procacci, Gravitational wave background from vacuum and thermal fluctuations during axion-like inflation, 2210.11710

 $f_0^3$  shape: largest thermal contribution comes from  $\sim T_{\rm max}$ 

$$\frac{\delta \mathcal{P}_{\mathrm{T}}(k)}{\delta \left(T\eta(\tau_{i})\right)} = \frac{32^{2} k^{3}}{m_{\mathrm{pl}}^{4}} \underbrace{\underline{G}_{\mathrm{R}}^{2}(\tau_{e},\tau_{i},k)}_{\text{constant for } k \ll aH}$$

multiplying  $\mathcal{P}_T$  with the post-inflation transfer function<sup>15</sup> yields

$$\Omega_{\rm GW} h^2 \supset A\left(\frac{f_0}{{\rm Hz}}\right)^3 \left(\frac{T\eta}{m_{\rm pl}^4}\right)_{\rm max}\,,\quad \left(T\eta\right)_{\rm max}\sim \frac{T_{\rm max}^4}{\alpha_{\rm min}^2}\,,$$

with the estimate  $A \sim 10^{-9}$  for  $\Lambda_{\rm IR} \ll m_{\rm pl} \Rightarrow$  "so and so"

 $<sup>^{15}</sup>$  assuming frequencies that re-enter the horizon within the radiation-dominated epoch

## $N_{\rm eff}$ : at $\pi T \gg m$ , $2 \rightarrow 2$ single-graviton (h) production

this could be from SM,<sup>16</sup> BSM,<sup>17</sup> or inflaton processes<sup>18,19</sup>



<sup>16</sup> J. Ghiglieri, ML, Gravitational wave background from Standard Model physics: qualitative features, 1504.02569; J. Ghiglieri, G. Jackson, ML, Y. Zhu, Gravitational wave background from Standard Model physics: complete leading order, 2004.11392

A. Ringwald, J. Schütte-Engel, C. Tamarit, 2011.04731; L. Castells-Tiestos,
 J. Casalderrey-Solana, 2202.05241; F. Muia, F. Quevedo, A. Schachner, G. Villa,
 2303.01548; M. Drewes, Y. Georis, J. Klaric, P. Klose, 2312.13855; ...

<sup>18</sup> P. Klose, ML, S. Procacci, Gravitational wave background from non-Abelian reheating after axion-like inflation, 2201.02317

<sup>19</sup> e.g. N. Bernal, S. Cléry, Y. Mambrini, Y. Xu, *Probing Reheating with Graviton Bremsstrahlung*, 2311.12694; A. Tokareva, *Gravitational Waves from Inflaton Decay and Bremsstrahlung*, 2312.16691; ...

### $N_{ m eff}$ : double-graviton (hh) rates can be added $^{20}$



<sup>&</sup>lt;sup>20</sup> J. Ghiglieri, J. Schütte-Engel, E. Speranza, *Freezing-In Gravitational Waves*, 2211.16513; J. Ghiglieri, ML, J. Schütte-Engel, E. Speranza, *Double-graviton production from Standard Model plasma*, 2401.08766

### $N_{\rm eff}$ : the signal is observable only at very high $T_{\rm max}$



#### phase transitions: effect of matter domination

if  $T_{\rm max} > T_{\rm c}$ , there is a (dark sector?) thermal phase transition

if  $\Upsilon \ll H_* \equiv \{$ Hubble rate at phase transition point $\}$ , inflaton oscillations lead to a matter domination era, which suppresses any inside-horizon gravitational wave signal<sup>21,22</sup>

$$h^2 \,\Omega_{\rm gw} \simeq 1.65 \times 10^{-5} \, \frac{g_e}{g_s} \left(\frac{100}{g_s}\right)^{1/3} \left(\frac{\Upsilon}{H_*}\right) \left(\frac{\min\{\Upsilon,\Gamma\}}{H_*}\right)^{2/3} \frac{2}{3(1+2w_*)} \frac{e_{\rm gw,*}}{e_{r+\varphi,*}}$$

 $[\Upsilon = inflaton friction, \Gamma = equilibration rate for dark sector]$ 

<sup>&</sup>lt;sup>21</sup> e.g. J. Ellis, M. Lewicki and V. Vaskonen, ... gravitational waves produced in a strongly supercooled phase transition, 2007.15586; F. Ertas, F. Kahlhoefer and C. Tasillo, ... listening to phase transitions in hot dark sectors, 2109.06208

<sup>&</sup>lt;sup>22</sup> H. Kolesova, ML, Update on gravitational wave signals from post-inflationary phase transitions, 2311.03718

### phase transitions: suppression if $\Upsilon \ll H_*$



 $\Rightarrow$  want large  $\Upsilon$  during reheating, or late transition (small  $H_*$ )

### at the largest $f_0$ , phase transitions merge with scatterings!



if bubble separation ( $\ell_B$ ) is as short as the mean free path ( $\ell_{\rm free}$ ), we have just thermal fluctuations

## what should be done better?

### there are many intriguing features, but...

 $\Rightarrow$  could something more be said about the thermalization (separately of the plasma, and of  $\varphi$ )?

 $\Rightarrow$  if  $T_{\rm max} < T_{\rm c}$  (confinement phase), the important coefficients  $\Upsilon$  and  $\eta$  become inaccurate — how to improve on them?

 $\Rightarrow$  how much are curvature perturbations modified from cold-inflation predictions when approaching the strong regime?  $^{23}$ 

 $\Rightarrow$  we looked at pure gauge; how about the effect of fermions?<sup>24</sup>

<sup>&</sup>lt;sup>23</sup> e.g. M. Mirbabayi and A. Gruzinov, *Shapes of non-Gaussianity in warm inflation*, 2205.13227; G. Ballesteros, A. Perez Rodríguez and M. Pierre, *Monomial warm inflation revisited*, 2304.05978; G. Montefalcone, V. Aragam, L. Visinelli and K. Freese, *WarmSPy: a numerical study of cosmological perturbations in warm inflation*, 2306.16190

<sup>&</sup>lt;sup>24</sup> e.g. K.V. Berghaus, P.W. Graham, D.E. Kaplan, G.D. Moore and S. Rajendran, *Dark* energy radiation, 2012.10549; M. Drewes and S. Zell, *On Sphaleron Heating in the Presence* of Fermions, 2312.13739

# backup slide

#### why is the temperature stationary at early times?

suppose that  $\Delta e$  from inflaton compensates for the hubble dilution, so that  $\dot{e}_r-T(\partial_TV)\simeq 0$ 

$$\dot{e}_r + 3H \left( e_r + p_r - T \partial_T V \right) - T \left( \partial_T \dot{V} \right) \simeq \Upsilon \dot{\bar{\varphi}}^2$$

$$\stackrel{e+p = Ts}{\Rightarrow} \underbrace{3T_{\text{stat}}s}_{\text{strongly $T$-dependent}} \simeq \underbrace{\frac{\Upsilon}{H} \frac{(\partial_{\varphi} V)^2}{(3H + \Upsilon)^2}}_{\text{weakly $T$-dependent}}$$

a solution exists and represents a stable fixed point!<sup>25</sup>

<sup>&</sup>lt;sup>25</sup> including the strong sphaleron rate: K.V. Berghaus, P.W. Graham and D.E. Kaplan, *Minimal warm inflation*, 1910.07525; W. DeRocco, P.W. Graham and S. Kalia, *Warming up cold inflation*, 2107.07517