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Axion inflation

* Axion inflation: originally motivated by shift symmetry. [Freese+90]

» Shift symmetric coupling ¢FF tachyonically produce gauge bosons.

Rich and interesting phenomenology.

Chiral GW production PBH production
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* Axion inflation with U(1) gauge boson coupling:
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* Axion velocity modifies the dispersion relation:
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(Expected to be Gaussian.)

* Helical gauge boson production towards the end of inflation:
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Strong backreaction regime

* Backreaction necessarily included to make a prediction for large £.

* Two (or more) methods in the market:

]) Classical lattice simulation [Caravano+22; Figueroa+23]

Q No approximaﬁon (except for classical approximation which is fairly good).

€) Numerically expensive and time consuming.  (Note that this is during inflation.)

2) Gradient expansion formalism (GEF)  [Sobol+ 19, 20; Gorbar+21]

& Numerically cheap and fast.

€) Ignoring axion inhomogeneities — quantitative difference from lattice.



Lattice vs. GEF
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From [Figueroa, Lizarraga, Urio, Urrestilla 23]
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2. Gradient expansion: 2pt functions



‘‘'Linearized” EoM

* Equation of motion given by
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» Gradient expansion formalism: ignore axion inhomogeneity ¢ = ¢(7).

EoM: linear in inhomogeneous quantities, i.e. E and B.

System closed within 2pt functions:

(f- (V X )”f), (ﬁo (V X )”?), (f- (7 X )”?) :

[Sobol+19, 20; Gorbar+21]
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Tower of 2pt functions

+ System closed within 2pt functions #{) = a"HX - (VX)'Y): [Sobol+19, 20; Gorbar+21]
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 Boundary term originating from sub-horizon quantum fluctuations
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» Infinite tower in derivatives truncated by extrapolation at n_.. ~ ©(100).
Pt l) = Z( 1) 1< >9»<”max+1 ), where P = P IH(k,la)"

L =1 used in original ref, L > 1 increases the stability of the system [Domcke, YE, Sandner 23].



Numerical result

» Showing oscillatory features after backreaction.
(confirming [Domcke+20])

* Numerically extremely cheap (a few min at most with my laptop).
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3. Gradient expansion: 3pt functions



Including inhomogeneities

* Equation of motion with inhomogeneity ¢ = ¢(t) + y :
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EoM non-linear in inhomogeneous quantities.
d(2 t)=...+ (3pt) d(3 t) = ... + (4pt)
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* One can truncate the tower of p-pt functions by factorization:
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(Wick contraction: works when the fluctuations are close to Gaussian.)



Truncation of infinite towers

* Include 3pt fn with up to one spatial derivative (as the lowest order approx)

p-pt functions [Domcke, YE, Sandner 23]
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Can be extended to higher orders.
# of correlators eventually diverges, but not a problem unless going to very high order.

* Monitor axion gradient energy to check the validity of our approx.

e = | V00
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Time evolution of & = ﬁ|$|/2HMP.

Numerical result
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Numerical result

Time evolution of & = ﬁlqﬁl/ZHMP.

[Domcke, YE, Sandner 23]
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Numerical result

Time evolution of & = ﬁ|$|/2HMP.

[Domcke, YE, Sandner 23]

Y GEF W/o ng
| —— GEFw/ V¢

— —  full Lattice

595 60.0

605 610 6L5

Light gray: 1 % axion gradient energy, dark gray: 50 %.




Numerical result

Time evolution of energy densities.

[Domcke, YE, Sandner 23]
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Summary

» Axion inflation with @FF: great pheno interest (GW, PBH, ...).

» Strong backreaction regime for large £.

Classical lattice: precise but numerically expensive.

GEF: numerically cheap but axion inhomogeneity ignored.

* We propose a way of including backreaction with axion inhomogeneity.
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Back up



Power spectrum

We can compute the power spectrum within our formalism: Ag = (HIp)*(y?) .
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Improved truncation condition
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N = 63 still shows instability for high n (even in 2pt case).



Phenomenology

Axion-gauge field coupling induces tachyonic gauge field production.
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* Fermion suppresses gauge boson production, even without axion coupling.
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“Gradient expansion method” [Gorbar, Schmitz, Sobol, Vilchinskii 21]
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Axion coupling enhances induced current, can be more effective:

g E? 2 B

J)~1TX
84/ ~ 7 2 E

e ¢ X max | — coth

nB

E

o

95 +m
Tm?

, 7 : duration of electric field.



