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Axion inflation
• Axion inflation: originally motivated by shift symmetry.

• Shift symmetric coupling  tachyonically produce gauge bosons.ϕFF̃

Rich and interesting phenomenology.

Chiral GW production PBH production

[Bartolo+16]
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Gauge field production

• Axion velocity modifies the dispersion relation:

0 = [ d2

dη2
+ k (k ± 2aHξ)] A±(η, ⃗k), ξ =

β ·ϕ
2HMP

.

exponential enhancement:  for A− ≃
1

2k ( k
2ξaH )

1/4

eπξ−2 2kξ/aH ·ϕ > 0.

• Helical gauge boson production towards the end of inflation:

⟨ ⃗E 2⟩ ≃ 2.6 × 10−4 e2πξ

ξ3
H4, ⟨ ⃗B 2⟩ ≃ 3.0 × 10−4 e2πξ

ξ5
H4, ⟨ ⃗E ⋅ ⃗B ⟩ ≃ 2.6 × 10−4 e2πξ

ξ4
H4 .

[Anber, Sorbo 09; …]
• Axion inflation with  gauge boson coupling:U(1)

S = ∫ d4x −g [ 1
2

gμν∂μϕ∂νϕ − V(ϕ) −
1
4

gμρgνσFμνFρσ −
βϕ

4MP
FμνF̃μν] .

(Expected to be Gaussian.)

(ignoring backreaction)



Strong backreaction regime

[Sobol+ 19, 20; Gorbar+21]

• Backreaction necessarily included to make a prediction for large .β

• Two (or more) methods in the market:

1) Classical lattice simulation

2) Gradient expansion formalism (GEF)

No approximation (except for classical approximation which is fairly good).

Numerically expensive and time consuming. (Note that this is during inflation.)

Numerically cheap and fast.

Ignoring axion inhomogeneities  quantitative difference from lattice.→

[Caravano+22; Figueroa+23]



Lattice vs. GEF
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• Backreaction necessarily included to make a prediction.

• Two (or more) methods in the market:

1) Classical lattice simulation

2) Gradient expansion formalism (GEF)

No approximation (except for classical approximation which is fairly good).

Numerically expensive and time consuming. (Note that this is during inflation.)

Numerically cheap and fast.

Ignoring axion inhomogeneities  quantitative difference from lattice.→

Is there a way to include axion inhomogeneties in GEF? 

[Caravano+22; Figueroa+23]
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“Linearized” EoM

0 = ··ϕ + 3H ·ϕ −
∇2ϕ
a2

+ m2
ϕϕ −

β
MP

⃗E ⋅ ⃗B ,

0 =
· ⃗E + 2H ⃗E −

1
a

⃗∇ × ⃗B +
β

MP

·ϕ ⃗B +
β

MP

1
a

⃗∇ ϕ × ⃗E ,

0 =
· ⃗B + 2H ⃗B +

1
a

⃗∇ × ⃗E ,

0 = ⃗∇ ⋅ ⃗E +
β

MP

⃗∇ ϕ ⋅ ⃗B , 0 = ⃗∇ ⋅ ⃗B .

• Equation of motion given by

• Gradient expansion formalism: ignore axion inhomogeneity .ϕ = ϕ(t)

EoM: linear in inhomogeneous quantities, i.e.  and .⃗E ⃗B

System closed within 2pt functions: 

⟨ ⃗E ⋅ ( ⃗∇ × )n ⃗E ⟩, ⟨ ⃗B ⋅ ( ⃗∇ × )n ⃗B ⟩, ⟨ ⃗E ⋅ ( ⃗∇ × )n ⃗B ⟩ .
[Sobol+19, 20; Gorbar+21]
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[Sobol+19, 20; Gorbar+21]



Tower of 2pt functions

• Boundary term originating from sub-horizon quantum fluctuations

• Infinite tower in derivatives truncated by extrapolation at .nmax ∼ 𝒪(100)

·𝒫(n)
E + (n + 4)H𝒫(n)

E −
2β ·ϕ
MP

𝒫(n)
EB + 2𝒫(n+1)

EB = [ ·𝒫(n)
E ]b

,

·𝒫(n)
B + (n + 4)H𝒫(n)

B − 2𝒫(n+1)
EB = [ ·𝒫(n)

B ]b
,

·𝒫(n)
EB + (n + 4)H𝒫(n)

EB − 𝒫(n+1)
E + 𝒫(n+1)

B −
β ·ϕ
MP

𝒫(n)
B = [ ·𝒫(n)

EB]b
,

e.g.  where  : “horizon”.[ ·𝒫(n)
E ]b

=
·kh

an+4

k2
h

2π2 ∑
σ=±

(σkh)n dAσ

dτ

2

k=kh

kh = maxt′￼≤t(2aHξ)

 used in original ref,  increases the stability of the system [Domcke, YE, Sandner 23].L = 1 L > 1

 where .𝒫̄(nmax+1)
X =

L

∑
l=1

(−1)l−1(L
l ) 𝒫̄(nmax+1−2l)

X , 𝒫̄(n)
X = 𝒫(n)

X /H4
0(kh /a)n

• System closed within 2pt functions                                         :𝒫(n)
XY = a−n−4⟨ ⃗X ⋅ ( ⃗∇ × )n ⃗Y ⟩ [Sobol+19, 20; Gorbar+21]



Numerical result
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• Showing oscillatory features after backreaction. 

• Numerically extremely cheap (a few min at most with my laptop).

(confirming [Domcke+20])
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Including inhomogeneities

0 = ··ϕ + 3H ·ϕ + m2
ϕϕ −

β
MP

⟨ ⃗E ⋅ ⃗B ⟩ ,

0 = ··χ + 3H ·χ −
∇2χ
a2

+ m2
ϕ χ −

β
MP

( ⃗E ⋅ ⃗B − ⟨ ⃗E ⋅ ⃗B ⟩) ,

0 =
· ⃗E + 2H ⃗E −

1
a

⃗∇ × ⃗B +
β

MP
( ·ϕ + ·χ) ⃗B +

β
MP

1
a

⃗∇ χ × ⃗E ,

0 =
· ⃗B + 2H ⃗B +

1
a

⃗∇ × ⃗E , 0 = ⃗∇ ⋅ ⃗E +
β

MP

⃗∇ χ ⋅ ⃗B , 0 = ⃗∇ ⋅ ⃗B ,

• Equation of motion with inhomogeneity  :ϕ = ϕ(t) + χ

EoM non-linear in inhomogeneous quantities.

d
dt

(2pt) = … + (3pt),
d
dt

(3pt) = … + (4pt), ⋯ .

• One can truncate the tower of -pt functions by factorization:p

⟨( ⃗X ⋅ ⃗Y )( ⃗Z ⋅ ⃗W )⟩ → ⟨ ⃗X ⋅ ⃗Y ⟩⟨ ⃗Z ⋅ ⃗W⟩ +
1
3

⟨ ⃗X ⋅ ⃗Z ⟩⟨ ⃗Y ⋅ ⃗W⟩ +
1
3

⟨ ⃗X ⋅ ⃗W⟩⟨ ⃗Y ⋅ ⃗Z ⟩

(Wick contraction: works when the fluctuations are close to Gaussian.)



Truncation of infinite towers
• Include 3pt fn with up to one spatial derivative (as the lowest order approx)

• Monitor axion gradient energy to check the validity of our approx.

# of spatial derivatives

-pt functionsp

0 1 2 ⋯

2

3

4

⋯

original GEF

Can be extended to higher orders. 
# of correlators eventually diverges, but not a problem unless going to very high order.

Rχ ≡
⟨(∇χ)2⟩
·ϕ2 + ⟨ ·χ2⟩

.

[Domcke, YE, Sandner 23]
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?



Numerical result
Time evolution of ξ = β | ·ϕ | /2HMP .

[Domcke, YE, Sandner 23]
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Numerical result
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Numerical result
Time evolution of energy densities.

Light gray: axion gradient energy, dark gray: .1 % 50 %

[Domcke, YE, Sandner 23]
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Summary

• Axion inflation with : great pheno interest (GW, PBH, …).ϕFF̃

• We propose a way of including backreaction with axion inhomogeneity.

• Strong backreaction regime for large .β

{
a
a
a

Classical lattice: precise but numerically expensive.

GEF: numerically cheap but axion inhomogeneity ignored.

# of spatial derivatives

-pt functionsp
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Back up



Power spectrum

We can compute the power spectrum within our formalism: Δ2
ζ = (H/ ·ϕ)2⟨χ2⟩ .
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Improved truncation condition
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 where .𝒫̄(nmax+1)
X =

L

∑
l=1

(−1)l−1(L
l ) 𝒫̄(nmax+1−2l)

X , 𝒫̄(n)
X = 𝒫(n)

X /H4
0(kh /a)n

 still shows instability for high  (even in 2pt case).𝒩 = 63 n



Phenomenology
• Axion-gauge field coupling induces tachyonic gauge field production.

• Fermion suppresses gauge boson production, even without axion coupling.

⟨ ⃗E 2⟩ ≃ 10−4 e2πξ

ξ3
H4, ⟨ ⃗B 2⟩ ≃ 10−4 e2πξ

ξ5
H4, ξ =

β ·ϕ
2HMP

.

• Axion coupling enhances induced current, can be more effective:

   duration of electric field.g⟨Jz⟩ ∼ τ ×
g3E2

2π2
e− πm2

gE × max [ B
E

coth ( πB
E ),

·θ2
5+m

πm2 ], τ :

“Gradient expansion method” [Gorbar, Schmitz, Sobol, Vilchinskii 21]
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