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Laser-hybrid Accelerator for

~

hARA will be a uniquely-flexible, novel system that will:
* Deliver a systematic and definitive radiobiology programme
* Prove the feasibility of the laser-driven hybrid-accelerator approach
* Lay the technological foundations for the transformation of PBT

— automated, patient-specific: implies online imaging & fast feedback and control

o J

A novel, hybrid, approach:

* Laser-driven, high-flux proton/ion source
— Overcome instantaneous dose-rate limitation
— Delivers protons or ions in very short pulses
— Triggerable; arbitrary pulse structure

* Novel “electron-plasma-lens” capture & focusing
— Strong focusing (short focal length) without the use of high-field solenoid

 Fast, flexible, fixed-field post acceleration. - Variable energy
* Protons: 15—127 MeV lons: 5—34 MeV/u

Radiobiological Applicatons
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SUPA Particle beam therapy today

* Cyclotron based:
— Limitations:
* Energy modulation
* Instantaneous dose rate

* Synchrotron based:
— Limitiations:
* Complexity
e |nstantaneous dose rate

z [m]
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Beam delivery

PSI gantry

Last benciing dipole:
bends beém into plane of
rotation alhd iso-center

Dipoles:
bending beam

away from/to axis -
—»

Particle
beam from
accelerator

Coupling point: Z | Iso-center

junction \ :

fixed/rotating :

beamline l
Quadrupoles: : H. Owen

provide focusing
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The Typical lon Source

Every ion source basically consists of two parts:
1. lon production inside a plasma
2. Beam extraction from the plasma

Space Charge

S. Laurie

S. Laurie

Plasma
chamber Emission
Aperture * 50 mA proton beam
Power Feed [l Plasma i « 5 mm initial radius
- 1000 mm drift distance 'O KeVbeam
Gas Feed mmm I I . !Expands due t,o its own
space charge

Science an d Confinement Magnet Extraction Spac.e Charge forces
R1 Rt s Electrodes velocity dependent 100 keV beam

e Extraction energy:
- 30_80 keV Seionce an . 1 MeV beam
* Limited by extraction voltage F s
* |nstantaneous flux (current or dose):

— Determined by acceptance of first accelerator structure
e Limited by mutual repulsion of protons (ions) ... “space-charge effect”




Sheath acceleration

Laser incidence

Titanium foil with
proton-rich dot

. e Laser incident on foil target:
— Drives electrons from material
— Creates enormous electric field

* Field accelerates protons/ions

— Dependent on nature of target

1 00

e @ Active development:
' ‘ — Laser: power and rep. rate
— Target material, transport
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LAS ER SOURCE SMILEI 2D: x-z Position Space at 1 ps

30

Positive ions from
hydrocarbon

LASER contamination on
the target surface

Electron sheath
generated by the laser
accelerates positive ions
from the target

20
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»  Produces intense beams and

o
|||I|II|I||||I|II|I|I||I|II||

multiple species, e.g. proton and 30/
carbon ions.
« Small emittance (~4.1x10- B.m.rad) * Very large divergence
* Huge energy spread * Neutral at the beginning then space charge dominated

* Very small beam size * Mixture of states



SUPA Advantages

* Protons (and ions) produced at “high energy”:

— e.g. 15 MeV > 250 times energy of conventional proton source

* High energy substantially reduced impact of space charge
— Allows evasion of instantaneous dose-rate limitation of today’s sources

* Pulsed operation “natural”:
— Discharge sources are DC; accelerator imposes time structure

— Pulsed operation determined by laser:
* A triggerable, “on demand”, source

e Critical issues:
— Efficient capture of divergent, high-energy ion flux
— Transformation of captured flux into useful beam

University of

Strathclyde

Glasgow




Lh AR/

H

Laser-hybrid Accelerator for
Radiobiological Applicatior.s

University of

Strathclyde

Glasgow

10



@ - [ Universityof
Energy collimation Strathclyde
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LhARA stage 1

Gabor Lens
RF Cavity

Octupole

Collimator

Dipole

+'+-|-..

Quadrupole

- Beam Dump
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=
S

=
N

=
o
1

[e2]
1

1 —— Mono 10 MeV
—— Mono 12 MeV
—— Mono 15 MeV

Dose uniformity
at end station
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Vertical Matching Arc

Matching and Energy Selection

/\

Front. Phys., 29 September 2020; DOI: 10.338%phy.2020.567738

Beam Shaping
and Extraction

N
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Rapid, flexible acceleration for stage 2 Strathclyde

Evolution of
RACCAM design;

prototype magnet
demonstrated

* Fixed-field alternating-gradient
accelerator (FFA):

— Invented in 1950s LhARA FFA
* Kolomensky, Okhawa, Symon

— Compact, flexible solution: 10 cells
* Multiple ion species 2 MA loaded

Variable energy extraction
High repetition rate (rapid acceleration) —
* Large acceptance : %

RF cavities

/\\” 105 20+
— Successfully demonstrated: i 15|
. o ><\>( o
Proof of principle at KEK . g s
* Machines at KURNS =, NS oz =) £ ]
* Non-scaling pop, EMMA, at DL 16 ol
- 20l
0502040608 T 127475 O 2850510 1530

s (m] x [mml
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SUPA
FFA LhARA
— Stage 2

Baseline:

* x3increase in
momentum
— 15 MeV protons
accelerated to 127 MeV

— 3.8 MeV/u carbon 6+
ions accelerated to 34
MeV/u

extraction Iine,,@@g septum
= |

extraction

[[]injection kicker

- I
‘/
-~
-~
4
7

N
“a

3
c;i;#g' ‘\

extraction

University of

Strathclyde

Glasgow

switching el

dipole _Ea’/

1

|

|
==
@
9 injectionline

m




University of

Essential R&D — Magnets Sirathelyde

Magnet with distributed
conductors:

* Parallel gap — vertical
tune more stable,

2 | - Flexible field and k
C RN :
B\ adjustment,

T 1 I T I
L] 10 21 33 19 50 59

“Gap shaping” magnet:
*Developed by SIGMAPHI for RACCAM project

*Initialy thought as more difficult - behaves very well

L L 1 . L N 1 : L L 1 . L . 1 .
S 24000 26800.0 2800 0 3000.0 32000 3400.0 3600.0 3B00.0
R [mmi

*Chosen for the RACCAM prototype construction

* For LhARA magnet with parallel gap with distributed windings (but a single current) would be of choice with
gap controlled by clamp. Concepts like an active clamp could be of interest too.

e Magnetic Alloy (MA) loaded RF cavities for the ring also important
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Gabor Lenses for strong focusing Sirathelyde
—pr_ Solenoid |
Differential _m . u
pump port vacuum . =4
Incoming ! NOX
vessel A
\ lon Beam _ r ' [ Cylindrical
Target H === £y e
Mi_ Cloud
~ 10cm Target-capture 1 BN A
interface | |
Laser P =
Insulator

vacuum
vessel \ F
* Focus in both planes simultaneously, strength is

energy dependent
— Cost effective solution compared to SC solenoids

 Chosen as a baseline solution for the capture
system and focusing in Stage 1

* Design based on Penning-Malmberg trap

* Require high vacuum to operate

e Subject to intensive 3D PIC simulation effort
to inform a stable solution (to mitigate
diocotron instability)

 Can be replaced by solenoids, if needed.
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Diocotron Instability iy

Solenoid

* ‘hollow’ particle distributions are
vulnerable to diocotron

Incoming
lon Beam _ &=

Cylindrical

* Observed in experiment Anode

Electron

* Modelled in Vsim/BDSim m

* Driven by off-axis electron supply? % %
— Possible on-axis electron filling. F |

Insulator
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Gabor Lens Strathlyde

e ‘New’ collaborators

— University of Swansea
(Anti-hydrogen Expt. @
Cern)

— Cockroft Insitute

Source chamber Buffer gas trap Storage trap Laser/Target
* Non-neutral Plasma e
. N R
confinement. :
H Two, 6- ted
* Plasma trapping and st it

cooling 1
* Extended trapping times — i \

hours to days

 Experimental apparatus at

4.1
Swansea o

< 28.1cm =
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‘New but established’ laboratory research

m=) satisfy treatment requirements.
Balance the total risk while retaining research relevance

Risk Mitigation Justification
Laser source Buy-able Heading toward mainsteam
Gabor Lens focussing  Alternate solution — Solenoid Cost
FFA accelerator Conventional accelerator Better solution
‘Live’ diagnostics Solutions exist — laboratory level Required —1mplicit

in choice of Laser source



SUB. | hARA performance: doses and dose rates
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LhARA performance summary

arXiv:2006.00493

12 MeV Protons | 15 MeV Protons | 127 MeV Protons | 33.4 MeV/u Carbon
Dose per pulse 7.1 Gy 12.8 Gy 15.6 Gy 73.0 Gy
Instantaneous dose rate | 1.0 x 109 Gy/s | 1.8 x 10? Gy/s 3.8 x 108 Gy/s 9.7 x 10° Gy/s
Average dose rate 71 Gyl/s 128 Gyl/s 156 Gy/s 730 Gy/s

Worked example: FLASH

Conventional regime
FLASH regime

~2 Gy/min
>40 Gy/s

Evidence of normal-tissue sparing
while tumour-kill probability is
maintained: i.e. enhanced

therapeutic window

Worked example: micro beams

Conventional regime

Microbeam regime

: > 1 cm diameter; homogenous

: <1 mm diameter.

20
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* Laser-driven sources are disruptive technologies ...
— With the potential to drive a step-change in clinical capability

* Laser-hybrid approach has potential to:
— Overcome dose-rate limitations of present PBT sources
— Deliver uniquely flexible facility:
* Range of: ion species; energy; dose; dose-rate; time; and spatial distribution

— LhARA design is compact and flexible.

* FFA-type ring as a post-accelerator enabling variable energy beams of various types of
ions.

* Good performance in tracking studies.
* Feasible ring injection, extraction and beam transport designed.

 The LhARA collaboration now seeks to:
— Prove the novel laser-hybrid systems in operation

— Contribute to the study of the biophysics of charged-particle beams
* Enhance treatment planning
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* LhARA team performed an intensive design work culminated by the international review last March

 very positive feedback received
* Pre-CDR completed

* Recent work summarised in article published in ‘Frontiers in Physics’

July 12, 2020 Final—revision 2 CCAP-TN-01

? frontiers ORIGINAL RESEARCH

publishe September 2020

in Physics doi: 10.3389/fphy.2020.567738

Laser-hybrid Accelerator for Radiobiological Applications
(LhARA) 2

LhARA: The Laser-hybrid Accelerator
for Radiobiological Applications

Galen Aymar', Tobias Becker?, Stewart Boogert®, Marco Borghesi®, Robert Bingham "%,

The LhARA collaboration
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