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€ expansion

Ideas of the renormalisation group are unsurprisingly best
understood when we can use perturbation theory.

Unfortunately, we typically don't have a small parameter with which
to construct perturbative series for physical observables of interest.

In some cases, however, we can make one up!

The most notable example is the € expansion, pioneered by Wilson
and Fisher more than 50 years ago, in 1971.

The main pursuit since then has been to access the physics of fixed
points in d = 3 dimensions using the following logic:

@ startind =4 —¢,
® compute physical observables as series in &,
©® resum (!) and send € — 1 in the end.



€ expansion — Simplest example

/d4_5x (10.900"0 + 2A¢")
For A = 0 the operator ¢* is relevant:
Np =452 =4-2e<4—c¢.

Thus, when the free theory is deformed by the operator ¢*, a
renormalisation-group flow is triggered.

The flow ends at another, interacting fixed point. The 8 function of
AisfBy, = —eX + 3)?, and has a non-trivial zero at A = &/3. Thisis a
fixed point with Z; global symmetry obtained in the Wilson—Fisher
prescription.

It is infrared-attractive, for the operator ¢* is irrelevant there:

A<p4 :d+6AB,\|,\:£/3 =4>4—c¢.



€ expansion — Ising model

Scaling dimensions of operators are the main observables.

With regular Feynman diagrams or analytic bootstrap methods we
may compute

Np=1—1e+ L2 +0(E), Ap=2-2e+26+0().

It turns out that the Z,-invariant fixed point we just found (with

€ — 1)isin the same universality class as the 3D Ising lattice model,
the critical point of water as well as the second-order phase
transition in ferromagnets at the Curie temperature.



Many scalars

The strategy we just described has been applied to a wide variety of
problems.

An obvious generalization is to consider the multi-scalar case,

/d4_€x(lau¢ia“<ﬁi + A L Pkpy) . i=1,... N,
Then,
Bijkl = _E)\ijkl + )\ijmn)\klmn + AikmnAiimn + )\ilmn)\jkmn .

There are %N(N + 1)(N + 2)(N + 3) independent couplings and 3
functions.

Imposing a global symmetry under which the action is invariant
reduces the number of couplings and 8 functions.



Various symmetries

There are a few known classes of fixed points with various global
symmetry groups.

® O(N):

’

2)2

e 7Z,N x Sy (hypercubic):

®

9?)? and Y I, o,
®»)? and Y NN e, <p, ,
®

(
(
Sni1 X Z; (hypertetrahedral) : (
(
(

® O(m)" % Sy (MN): ?)? and Y1 (67)°,
® O(m) x O(n)/Z,: trp?)? and tro*,
® O(m) x O(n) (biconical): (@)%, (¥%)? and @22,

These theories have been extensively analyzed due to their
applications to critical phenomena, in many cases with results
computed up to six loops.



This talk

We will be interested in a different set of questions that arise when
one considers the overall structure of the € expansion itself.

What are universal constraints that need to be satisfied by any
theory obtained as a fixed point in the € expansion?

Is there an organizing principle for fixed points in the € expansion?

We will be interested in systems with scalar fields, scalars and
fermions, and will also consider line defects.

We want to assess how hard it might really be to “map the space of
CFTs in 3D"

For the rest of this talk we will mostly discuss results at leading
orderin .



A bound for scalar theories

The symmetric coupling tensor A;j, can be decomposed into
irreducible representations of O(N) as

At = do(8ji6s + .. .) + (8o + .. .) + dajja
where d, and d, are symmetric and traceless.
Schematically, this is the decomposition
rank-4 symmetric tensor = spin-0 & spin-2 & spin-4 .
Let us now define the O(N) invariants
ao = Aijj, ar = Akl S = AjiAijut »

which are the only invariants up to quadratic order.



A bound for scalar theories

We will work with the quantitiesogervorst & Toldo; 2020. Osborn & As; 2020)

ao = N(N + 2)do , a = (N +4)°||do||* = a1 — a3,
3

_ 2 _c_ 6 _ 2

as = ||da||* = S — 1792 NN+2) 90 -
If a; # 0, there exists a non-trivial d, jj tensor and there are then
more than one quadratic invariants.

From the B-function equation,
Aij = AimnAjmn + 2AjmnAjmn = G0 = a2 + yag + 25,
which can be brought to the form

N2 <

1 N.

1 —Iny_ 1 _ 1
S+ 502 = 8N 2N((]o 5



Bound saturation

For N > 4 there are some known cases where the bound is
saturated, all of them with a; = 0.

° N=4: 0(4),
e N =5: hypertetrahedral (S¢ x Z5),
® N = mjn;, with (mjy1, niy1) = (10m; — n; + 4, my),

my =7,n =1: O( ) O(n)/Zz,
® N = 2mjn;, with (M1, niy1) = (10m; — n;, my),
my =5, =1: Um) x Un)/U(1).

Allowing factorised fixed points, the bound can be saturated for all
N exceptforN = 2,3,6,7,11 (based on our current knowledge).

One can show that whenever the bound is saturated with a; = 0,
there is a marginal operator in the theory.



Known fixed points for low N

We will be interested in fully-interacting fixed points only.
For N = 1 the only fixed point is Ising.

For N = 2 the only fixed point is the O(2) fixed point. It does not
saturate the bound, so the bound cannot be saturated for
N = 2.(Osborn & AS; 2017)

For N = 3 the only fixed points were recently shown to be O(3),
cubic and biconical.

# different y

N=3 S do a; as Symmetry and degeneracies #k <0, =0
G 1 4 0 == B3 =73 xS3 1(3) 1,5
Bno, 0.370451 133713 0.000255 0.01265  Z, x O(2) 2(2,1) 1,2
0 57 % 0 0 03) 16) 0,0



Known fixed points for low N

N=4 S a a, as Symmetry anjgggf;%rﬁgrta‘éies #Kk<0,=0

O4
Ta.

0 0 0(4) 1(4) 0,25

2 Ssx1Z 1(4) 15, 6

N
N NI=
o
N
o

&

N=5 S ay a; as Symmetry anjgieféeerrfgrta‘éies #Kk<0,=0

Os e 2 0 o0 0(5) 105 55,0
28 8 4

@ B 8 o X Bs 1(5) 40, 14

Tos 2 3 0 & SexI 1(5) 39, 11



Known fixed points for low N

N=6 S ay a as; Symmetry anggiefgf]%rﬁg;ca‘éies #k <0, =0
Os x 7 0 o0 0(6) 1(6) 105, 0
Co 7T 0 5 Bs 1(6) 84, 20
MNy3 3 % 0 37 O@2PxS; 1(6) 86, 12
MNs2 38 37 0 i OGP xZ: 1(6) 77, 9
Tor 19 2 0 % SxZ 16) 84, 15
oo 3 3 0 335 SixZp 1(6) 83, 15
N=7 S d a a Symmetry anjgézzrsgfazies #K<0,=0
o F ¥ 0o 0 00 17) 182, 0
G $ 4 0 3 By 1(7) 154, 27
e 13 0% 0 F &xI 1(7) 154, 21
- 3R 0 E S&xI 107) 153, 21



And now?

Is that really all there is?

There is a general perception that conformal field theories are rare.
But is this perception correct?

We are of course talking about unitary conformal field theories.

Our bound on S shows that fixed points in the € expansion are
indeed constrained. This could be seen as a hint suggesting their
scarcity, but is there more we could say?

Do most fixed points in the € expansion have rational S, ag, az, a,?



Numerical search for fixed points for low N

We numerically solved the B-function equations.
We made no assumptions about symmetries.

Somehow, this brute force approach had not been attempted
before.

The algorithm we used is called IPOpt. It is an algorithm that can
perform nonlinear constrained optimization.

We found that IPOpt performs very well for our problem for N as
high as 9 (495 equations and couplings), but we will focus on N < 7.
For N = 7 there are 210 equations and couplings.



Numerically-obtained fixed points for N = 4

N=4 S do ax as Symmetry anggieféeerrfgrta)éies #Kk<0,=0
0, 3 2 0 0 0(4) 1(4) 0,25
Ta e 2 0 e Ss X Z, 1(4) 15,6
727 0499115 192406 0.000328 0.036117 3(1,2,1) 14,6
777 0499144 192641 0000359 0.034994 3(1,2,1) 13,6
777 0499606 195458 0000273 0.021851 2(2.2) 12,5

Quite surprising... three new fixed points.

This numerical method gives us numbers, but doesn't tell us
anything about the nature of these fixed points, e.g. their global
symmetries.

To uncover more information, the number of different eigenvalues
of y;; and their degeneracies, as well as the number of zero modes
of the stability matrix provide good hints.



“Double trace” perturbations
Take two known theories, add them up, and couple their quadratic
invariants.
This follows the spirit of biconical theories:
Vbiconical = %M ((PZ)Z + %)‘2 (X2)2 + %h(P2X2~

It is by no means guaranteed that this procedure will yield new
unitary fixed points.

It may just be that the only real solutions obtained are the ones
where the coupling h of the quadratic invariants is set to zero.

However, if we apply this procedure with Vs, (¢) and Vising(¢), we
find a new N = 4 fixed point with S = 0.499115, which is one of the
numerically obtained solutions!



The other two N = 4 fixed points

Va(9) = g Ao + 07) + 55 9(01* + 05

+ X058 + Lxa el + 1zelel

+ 3 h(97 + 07)05 + 5 (o7 + 07)04 + h 910,030,
Symmetry: Dg x Z,

V3(@) = 2 M(@2 + 02) + § (0 + 04)°

+ 1 h(of + 0) (95 + @)

+ 3 (0P — 30102, 02 —3020;) - (03, 04).-

Symmetry: O(2)
These new N = 4 fixed points were independently discovered

recently, but their global symmetry groups were not identified
Correctly.(Codello, Safari, Vacca & Zanusso; 2020)



Numerically-obtained fixed points for N = 4

This is (very likely) the complete table of N = 4 fixed points:

N=4 S ao a» as Symmetry ang géfgszrﬁgfa‘éi o5 #K<0,=0
04 1 2 0 0 0(4) 1(4) 0,25
Ta & 2 0 X Ss x 7 1(4) 15,6
Bs,q 0499115 1.92406 0.000328 0036117 S3x Zy x Z, 301,2,1) 14,6
Bopwi 0499144 192641 0.000359 0034994 Dy x Z, 3(1,2,1) 13,6

0,00, 0499606 1.95458 0.000273 0.021851 0(2) 2(2,2) 12,5



Fixed points for N = 5

N=5 S ao a; as Symmetryanggief;ee'ﬁg:a‘éies #Kk<0,=0
Os 1% = 0 0 0(5) 1(5) 55,0
Gs P 8 0 T Bs 1(5) 40, 14
Tss 3 2 0 = S6 x Z, 1(5) 39, 11
B.o, 0621937 267255 0.000170 0.009605 Z, x 0(4) 2(4,1) 50, 4
Bc,o, 0622163 266667 0.000118 0.012561 B, x 0(3) 2(3,.2) 46,7
Bco, 0622230 266560 0.000056 0.013157 B3 x 0(2) 2(2,3) 41,9
Buoso, 0623037 263897 0.000064 0.026068 Z,x 0(2) x0(2)  3(2,1,2) 40,8
Bco,  0.623040 263881 0.000066 0.026139 Bs x 0(2) 2(3,2) 38,9

Bo,«0,  0.623053 2.63808 0.000082 0.026474 0(2) x O(3) 2(3,2) 37,6



Irrational fixed points for N = 6

N=6 S do az (A Symmetry an:; gief;eer:::aties #k<0,=0
Bios 0.738216  3.35878 0.002115 0.031859 Z, x O(5) 2(5,1) 99, 5
Bc,«0, 0.739865 3.33333 0.001752 0.044369 B, x O(4) 2(3,3) 94,9
Bcsio, 0.740572 332649 0.001091 0.048323 B3 x O(3) 2(3,3) 90, 12
Bc,+0, 0.740798  3.32758 0.000520 0.048438 B4 x 0(2) 2(2,4) 85, 14
Bo,«0, 0.744334 332362 0.002037 0.088569 0(2) x O(4) 2(4,2) 94, 8
B140,+05 0.744373 323709 0.001886 0.088318  Z, x O(2) x O(3) 3(3,1,2) 90, 11
Be,r0, 0.7443770 323720 0.001868 0.088288 B4 x 0(2) 2(4,2) 87,14
Bs,+0, 0.7443773 3.23721 0.001867 0.088286 S4 x Zy x 0(2) 3(3,1,2) 86, 14
Bc,v0,0, 0744379 323726 0.001860 0.088272 By x 0(2) x O(2) 3(2,2,2) 85, 13
Boj«0,40, 0744437 323901 0.001605 0.087776 (0(2)? x Z;) x O(2) 2(4,2) 85, 12
Bloys0, 0746610 3.19983 0.000125 0.106603  (Z» x O(2))? x Z 2(4,2) 83,13
Bs,«0, 0.746638 3.19991 0.000063 0.106637 Sa x Z3 x 0(2) 3(2,3,1) 81, 14
B10,+05 0.746962  3.18917 0.000112 0.111220  Z, x O(2) x O(3) 3(2,3,1) 80, 11
Bev0s 0.746991  3.18955 0.000030 0.111147 B3 x O(3) 2(3,3) 78,12



Irrational fixed points for N = 7

N=7 N ao a ag Symmetry anggg;eerneenrta‘éies #k<0,=0
Blios 0.848454 4.05973  0.008335 0.059079 Z3 x 0(6) 2(6,1) 175, 6
Beyio, 0.855735 3.97989 0.005630 0.098402 B3 x O(4) 2(43) 164, 15
Bessc, 0.857146 3.99516 0.000681 0.098711 B3 x By 2(3,4) 156, 21
Beyvo, 0.857297 3.98590 0.001676 0.099839 0(2) x Bs 2(2,5) 155, 20
Bo,+05 0.862416 3.82034 0.010508 0.161683 0(2) x O(5) 2(5,2) 169, 10
B0,+04 0.863351 3.82328 0.008369 0.162715 Z; x 0(2) x O(4) 3(24,1) 164, 14
Bc,10,405 0.863688 3.82583  0.007459 0.162621 B, x 0(2) x O(3) 3(3,2,.2) 160, 17
Bcsso, 0.863748 3.82704 0.007224 0.162369 0(2) x Bs 2(5,2) 158, 20
Be, 340, 0.863750 3.82693 0.007230 0.162405 0(2) x B, x B3 3(3,2,2) 156, 20
Bo,+0,4¢5 0.863776 3.82689 0.007183 0.162473 0(2) x O(2) x B3 3(23,2) 155, 19
B0,+0,+0, 0.865351 3.85371 0.001426 0.157379 Z, x 0(2) x (0(2)? x Z3) 3(21,4) 155, 18
B10,+0,+0, 0.865360 3.84698 0.002082 0.159497 Z, x O(2) x O(2) x O(2) 4(21,2,2) 154, 18
Bo,40,4¢5 0.865363 3.85323 0.001450 0.157553 B3 x (0(2)% x Z,) 2(3,4) 153, 19
B0,+0,+C5 0.865370 3.84723 0.002036 0.159439 0(2) x O(2) x B3 3(3,2,2) 152, 19
Boyos0,  0.865427558  3.84923  0.001721 0.158937  O(3) x (O(2)? x Z5) 23,4) 152, 16
Bo,+0,40,  0.865427563  3.84907 0.001738 0.158988 0(2) x 0(2) x 0(3) 333,2,2) 151, 16
Blicy404 0.8712962  3.68437 0.002552 0.223496 Z, x By x O(4) 3(4,2,1) 162, 15
Bucc, 0.87129773  3.684606 0.002536 0.223423 Zy x By x By 3(4,2,1) 155, 21
0.87129775 3.684611 0.002536 0.223421 4(2,2,2,1) 153, 20
Besvo, 0.8712983 3.68496 0.002516 0.223311 B3 x O(4) 2(4,3) 161, 15
0.8712989  3.70402 0.001456 0.217183 3(4,2,1) 152, 21

0.8712994 3.68487 0.002519 0.223342 3(4,2,1) 153, 19



Irrational fixed points for N =

7 (cont’d)

N=7 S a0 a; ag Symmetry anggg;eer:grta\éies #K<0,=0
Blossc; 0.8712996 3.68516 0.002503 0.223247 Z; x B3 x O(3) 33,1.3) 157,18
Bcyic, 0.871299832 3.6852003 0.00250046 0.2232359 B3 x By 2(4,3) 154, 21
Blucyucs 0.871299833 3.6852004 0.00250045 0.2232358 Zy x B3 x B3 3(3,1,3) 153, 21
Boyscyrcs 0.87129986 3.68521 0.002500 0.223234 0(2) x B, x B3 3(2,2,3) 152, 20
Boyopc, 0871301 368547 0002483 0223153 Bs x (0(2)2 % Z3) 24,3) 152,19
Beyut, 0.871304 3.70466 0.001409 0.216987 B3 x Ss x Z, 2(4,3) 151, 21
0.871305 3.70164 0.001581 0.217961 5(1,2,1,2,1) 151, 21
0.87130606 3.70132 0.001598 0.218064 5(1,1,2,2,1) 150, 21
Bs,«0, 0.871306 3.70264  0.00152144 0.217639 Ss x Z; x 0(2) 3(2,4,1) 151, 20
0.871310 3.70227 0.001536 0.217767 4(1,2,1,3) 150, 21
0.871311 3.70195 0.001553 0.217871 4(1,1,23) 149, 21
0.871314 3.70006 0.001655 0.218486 5(1,2,2,1,1) 150, 20
0.8713147 3.69972 0.0016724  0.218597 5(1,2,1,2,1) 149, 20
B1.0,+04 0.8713152 3.68073 0.002703 0.224709 Z; x 0(2) x O(4) 3(24,1) 161, 14
Bunopo, 0871316 368092 0002691 0224648  Z x Z x O(2) x O(3) 43,2,1,1) 157,17
Bioysc, 0.87131659 3.68096 0.002689 0.224637 Z; x 0(2) x By 3(2,4,1) 154, 20
0.87131661 3.68097 0.002688 0.224636 4(2,2,2,1) 152, 19
Buopos0, 0871318 368121 0002673 0224559 7, x O(2) x (O(2)? % Z5) 3241 152,18
0.8713206 3.68941 0.002233 0.221922 3(4,2,1) 151, 21
0.87132074 3.68949 0.002229 0.221899 5(1,2,1,2,1) 150, 21
0.87132076 3.6895 0.002228 0.221894 5(1,1,2,2,1) 149, 21
Beyuty 0.8713233 3.69025 0.002183 0.221659 B3 x S5 x Z; 2(4,3) 150, 21
0.87132340 3.69033 0.002178 0.221632 4(1,2,1,3) 149, 21
0.87132342 3.69035 0.002177 0.221627 4(1,1,2,3) 148, 21



Irrational fixed points for N = 7 (cont'd)

N=7 N aop a ag Symmetry ang gief;eerrsgrta‘éies #Kk<0,=0
Bssxo0, 0.871337 3.68539 0.00241684 0.223251 S5 x Z x 0(2) 3(24,1) 150, 20
0.87133668  3.68544  0.0024141 0.223236 5(1,2,2,1,1) 149, 20
0.87133669 3.68545 0.0024136  0.223233 5(1,2,1,2,1) 148, 20
Brs0, 0.872241 3.68634 0.000557  0.224839 0(3) x Ss x Z3 2(4,3) 150, 18
0.872269 3.68187 0.000737  0.226337 4(1,2,3,1) 149, 18
0.872273 3.68132 0.000758  0.226521 4(1,1,2,3) 148, 18
5101002)*03 0.872388 3.66736 0.001223  0.231267 0(2) x 0(3) 3(2,2,3) 147,17
Bo, o0, 0.8724124 3.65263 0.001847  0.236084 0O(3) x O(4) 2(4,3) 160, 12
B1i03+05 0.8724128 3.65273 0.001842  0.236054  Z, x O(3) x O(3) 3(31,3) 156, 15
Bc,+05 0.8724129 3.65275 0.001841 0.236049 O(3) x Bs 2(4,3) 153, 18
B0y0+05 0872413 365286  0.001835 0.236012 O(3) x (O(2)2 x Z3) 2(4,3) 151, 16
Br,:0, 0.872418318 3.654206 0.0017663 0.235587 0(3) x Ss x Z; 2(4,3) 149, 18
0.872418321 3.654208 0.0017662 0.235586 4(1,1,2,3) 147,18
Biojooy0, 0872419 365456  0.001749 0235474 0(2) x 0(3) 32,23) 146, 17



Fixed points for N = 4
Green curve: S = gN — 55 (ao — 3N)2.
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Fixed points for N = 5
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Fixed points for N = 6
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Fixed points for N = 7
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Fixed points in scalar-fermion systems

Consider

[ a=x (10000, + B o,
+ 21k Pi0;0kP + (3Yiab@iaPp + h.C.)) .

Now we have the Yukawa  functions too and the Yukawa
contributions to the quartic coupling 8 functions:

Biab = —3€Yiab + “(v*)iab" .

Bk = —€Aja + “N)ia” + “O)iwa” — “0Py2 )i -
Well-known models of this type include the Gross—Neveu-Yukawa

model and the Nambu-Jona-Lasinio-Yukawa model.

There are suggestions for emergent supersymmetry ind = 3in
these mOdeIS.(Fei,Giombi, Klebanov & Tarnopolsky; 2016)



A bound for scalar-fermion theories

Similarly to the scalar case, we can here define invariants that now
involve the Yukawa coupling tensor too.

These invariants satisfy two bounds, one coming from the quartic
and one from the Yukawa (8 function. These can be combined to

S+ 3by —6Y < §N;,

These constraints are universal: they apply to any scalar-fermion
fixed point obtained in the € expansion at leading order in .
Another form is

12112 = 61lywlI” < §Ns .



Fixed points for N
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Fixed points for Ny = N
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Line defects

In the £ expansion A, = 1 — 1& < 1, and so one can consider

Scrr — Scer + / dtg,(1,0).
Scrr could involve only scalars, or scalars and fermions.

The question is if there exists an IR defect CFT, where the couplings
h; flow to a fixed point.

The B function of h; for a multi-scalar bulk CFT is
Bi = —%Eh,' + %)\,‘jk/hjhkh/.

This has also been computed to next-to-leading order including
fermions in the bulk.@annei & as,2023)



Line defect in O(N) model

As an example take the O(N) model in the bulk. Then
B; = —3ehi(1 — N%rshz), h? = hih; .
A non-trivial fixed point is found for
h*=N+38.

Notice that we cannot fix the individual vector h; but only its norm.

There is thus a manifold of equivalent theories. The manifold is SV~
and it arises because the bulk symmetry G = O(N) is broken to
K = O(N — 1) on the defect. S~ is the quotient G/K.



Line defect in hypercubic model

Here

Bi=—Seh(1 — Joh? — 52

There are non-trivial fixed points when we choose n of the N
couplings to be non-zero and equal in absolute value. There are a
total of 3" solutions that fall into N + 1 universality classes.

For N = 3, for example,
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O(N) vs Hypercubic

Depending on N, it could be that the O(N) fixed point is stable, or
the hypercubic fixed point is stable.

V(g) = 4gZ<p,
T \74

N < N, N> N,

The critical N is however N, = 2.89(2), so the RG flow from O(3) to
cubicis very short.




O(3) vs Cubic

The fact that the RG flow between O(3) and cubic is short means
that critical exponents in these models are nearly degenerate, e.g.

vl —vOB) = _0.0003(3).

It would be interesting to develop methods that help distinguish
such nearby universality classes. Defects might help.

The one-point function coefficient of the order parameter in the
presence of the defect is given (at next-to-leading order) by
£—1

% 2(11log2 —1)e (0(3)) = 4.406,

2
dyp
1

a2 =% +1(27log2 — 2)e (cubic) 5  4.471.
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Higher orders are needed for a solid conclusion.



Summary

We found novel constraints on fixed points in the € expansion.

We found dozens of previously undiscovered fixed points in
d=4—=¢.

The nature of these fixed points gives hints about the structure of
the € expansion (“double trace” perturbations).

These observations provide possible avenues to pursue to fully
classify fixed points in the € expansion.

Defect deformations can help us distinguish universality classes
that are otherwise separated by short RG flows.

Can we prove that there are no scalar fixed points with just Z,
symmetry in d = 4 — € besides the Ising model, or find other fixed
points with just Z, symmetry?



