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ε expansion

Ideas of the renormalisation group are unsurprisingly best
understood when we can use perturbation theory.

Unfortunately, we typically don’t have a small parameter with which
to construct perturbative series for physical observables of interest.

In some cases, however, we can make one up!

The most notable example is the ε expansion, pioneered by Wilson
and Fisher more than 50 years ago, in 1971.

The main pursuit since then has been to access the physics of fixed
points in d = 3 dimensions using the following logic:

1 start in d = 4 − ε,

2 compute physical observables as series in ε,

3 resum (!) and send ε → 1 in the end.



ε expansion — Simplest example
∫

d4−εx
(1
2∂μφ∂μφ + 1

4! λφ
4)

For λ = 0 the operator φ4 is relevant:

Δφ4 = 4d−2
2 = 4 − 2ε < 4 − ε .

Thus, when the free theory is deformed by the operator φ4, a
renormalisation-group flow is triggered.

The flow ends at another, interacting fixed point. The β function of
λ is βλ = −ε λ + 3λ2, and has a non-trivial zero at λ = ε/3. This is a
fixed point with Z2 global symmetry obtained in the Wilson–Fisher
prescription.

It is infrared-attractive, for the operator φ4 is irrelevant there:

Δφ4 = d + ∂λβλ|λ=ε/3 = 4 > 4 − ε .



ε expansion — Ising model

Scaling dimensions of operators are the main observables.

With regular Feynman diagrams or analytic bootstrap methods we
may compute

Δφ = 1 − 1
2 ε + 1

108 ε
2 + O(ε3) , Δφ2 = 2 − 2

3 ε + 19
162 ε

2 + O(ε3) .

It turns out that the Z2-invariant fixed point we just found (with
ε → 1) is in the same universality class as the 3D Ising lattice model,
the critical point of water as well as the second-order phase
transition in ferromagnets at the Curie temperature.



Many scalars

The strategy we just described has been applied to a wide variety of
problems.

An obvious generalization is to consider the multi-scalar case,
∫

d4−εx
(1
2∂μφi∂μφi + 1

4! λijklφiφjφkφl
)

, i = 1, . . . ,N .

Then,

βijkl = −ε λijkl + λijmnλklmn + λikmnλilmn + λilmnλjkmn .

There are 1
4!N(N + 1)(N + 2)(N + 3) independent couplings and β

functions.

Imposing a global symmetry under which the action is invariant
reduces the number of couplings and β functions.



Various symmetries

There are a few known classes of fixed points with various global
symmetry groups.

• O(N) : (φ2)2,
• Z2

N ⋊ SN (hypercubic) : (φ2)2 and
∑N

i=1 φ
4
i ,

• SN+1 × Z2 (hypertetrahedral) : (φ2)2 and
∑N+1

α=1 (eiαφi)4 ,
• O(m)n ⋊ Sn (MN) : (φ2)2 and

∑n
i=1(φ⃗i

2)2 ,
• O(m) × O(n)/Z2 : (trφ2)2 and trφ4 ,
• O(m) × O(n) (biconical) : (φ⃗2)2, ( χ⃗2)2 and φ⃗2 χ⃗2 ,
• …

These theories have been extensively analyzed due to their
applications to critical phenomena, in many cases with results
computed up to six loops.



This talk

We will be interested in a different set of questions that arise when
one considers the overall structure of the ε expansion itself.

What are universal constraints that need to be satisfied by any
theory obtained as a fixed point in the ε expansion?

Is there an organizing principle for fixed points in the ε expansion?

We will be interested in systems with scalar fields, scalars and
fermions, and will also consider line defects.

We want to assess how hard it might really be to “map the space of
CFTs in 3D”.

For the rest of this talk we will mostly discuss results at leading
order in ε.



A bound for scalar theories

The symmetric coupling tensor λijkl can be decomposed into
irreducible representations of O(N) as

λijkl = d0(δijδkl + . . .) + (δijd2,kl + . . .) + d4,ijkl ,

where d2 and d4 are symmetric and traceless.

Schematically, this is the decomposition

rank-4 symmetric tensor = spin-0 ⊕ spin-2 ⊕ spin-4 .

Let us now define the O(N) invariants

a0 = λiijj , a1 = λijkkλijll , S = λijklλijkl ,

which are the only invariants up to quadratic order.



A bound for scalar theories

We will work with the quantities(Hogervorst & Toldo; 2020. Osborn & AS; 2020)

a0 = N(N + 2)d0 , a2 = (N + 4)2||d2||2 = a1 − 1
Na

2
0 ,

a4 = ||d4||2 = S − 6
N+4a2 − 3

N(N+2)a
2
0 .

If a2 ̸= 0, there exists a non-trivial d2,ij tensor and there are then
more than one quadratic invariants.

From the β-function equation,

λiijj = λiimnλjjmn + 2 λijmnλijmn ⇒ a0 = a2 + 1
Na

2
0 + 2S ,

which can be brought to the form

S + 1
2a2 = 1

8N − 1
2N (a0 − 1

2N)2 ⩽ 1
8N .



Bound saturation

For N ⩾ 4 there are some known cases where the bound is
saturated, all of them with a2 = 0.

• N = 4: O(4),
• N = 5: hypertetrahedral (S6 × Z2),
• N = mini, with (mi+1, ni+1) = (10mi − ni + 4,mi),
m1 = 7, n1 = 1: O(mi) × O(ni)/Z2,

• N = 2mini, with (mi+1, ni+1) = (10mi − ni,mi),
m1 = 5, n1 = 1: U(mi) × U(ni)/U(1).

Allowing factorised fixed points, the bound can be saturated for all
N except for N = 2, 3, 6, 7, 11 (based on our current knowledge).

One can show that whenever the bound is saturated with a2 = 0,
there is a marginal operator in the theory.



Known fixed points for low N

We will be interested in fully-interacting fixed points only.

For N = 1 the only fixed point is Ising.

For N = 2 the only fixed point is the O(2) fixed point. It does not
saturate the bound, so the bound cannot be saturated for
N = 2.(Osborn & AS; 2017)

For N = 3 the only fixed points were recently shown to be O(3),
cubic and biconical.

N = 3 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

C3
10
27

4
3 0 2

135 B3 = Z2
3 ⋊ S3 1(3) 1, 5

BI∗O2 0.370451 1.33713 0.000255 0.01265 Z2 × O(2) 2(2,1) 1, 2

O3
45
121

15
11 0 0 O(3) 1(3) 0, 0



Known fixed points for low N

N = 4 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O4
1
2 2 0 0 O(4) 1(4) 0, 25

T4−
220
441

40
21 0 20

441 S5 × Z2 1(4) 15, 6

N = 5 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O5
105
169

35
13 0 0 O(5) 1(5) 55, 0

C5
28
45

8
3 0 4

315 B5 1(5) 40, 14

T5±
5
8

5
2 0 5

56 S6 × Z2 1(5) 39, 11



Known fixed points for low N

N = 6 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O6
36
49

24
7 0 0 O(6) 1(6) 105, 0

C6
20
27

10
3 0 5

108 B6 1(6) 84, 20

MN2,3
90
121

36
11 0 9

121 O(2)3 ⋊ S3 1(6) 86, 12

MN3,2
216
289

54
17 0 135

1156 O(3)2 ⋊ Z2 1(6) 77, 9

T6+
110
147

20
7 0 5

21 S7 × Z2 1(6) 84, 15

T6−
182
243

28
9 0 35

243 S7 × Z2 1(6) 83, 15

N = 7 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O7
21
25

21
5 0 0 O(7) 1(7) 182, 0

C7
6
7 4 0 2

21 B7 1(7) 154, 27

T7+
105
121

35
11 0 5

21 S8 × Z2 1(7) 154, 21

T7−
196
225

56
15 0 28

135 S8 × Z2 1(7) 153, 21



And now?

Is that really all there is?

There is a general perception that conformal field theories are rare.

But is this perception correct?

We are of course talking about unitary conformal field theories.

Our bound on S shows that fixed points in the ε expansion are
indeed constrained. This could be seen as a hint suggesting their
scarcity, but is there more we could say?

Do most fixed points in the ε expansion have rational S, a0, a2, a4?



Numerical search for fixed points for low N

We numerically solved the β-function equations.

We made no assumptions about symmetries.

Somehow, this brute force approach had not been attempted
before.

The algorithm we used is called IPOpt. It is an algorithm that can
perform nonlinear constrained optimization.

We found that IPOpt performs very well for our problem for N as
high as 9 (495 equations and couplings), but we will focus on N ⩽ 7.
For N = 7 there are 210 equations and couplings.



Numerically-obtained fixed points for N = 4

N = 4 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O4
1
2 2 0 0 O(4) 1(4) 0, 25

T4−
220
441

40
21 0 20

441 S5 × Z2 1(4) 15, 6

??? 0.499115 1.92406 0.000328 0.036117 3(1,2,1) 14, 6

??? 0.499144 1.92641 0.000359 0.034994 3(1,2,1) 13, 6

??? 0.499606 1.95458 0.000273 0.021851 2(2,2) 12, 5

Quite surprising… three new fixed points.

This numerical method gives us numbers, but doesn’t tell us
anything about the nature of these fixed points, e.g. their global
symmetries.

To uncover more information, the number of different eigenvalues
of γij and their degeneracies, as well as the number of zero modes
of the stability matrix provide good hints.



“Double trace” perturbations

Take two known theories, add them up, and couple their quadratic
invariants.

This follows the spirit of biconical theories:

Vbiconical = 1
8 λ1 (φ2)2 + 1

8 λ2 (χ2)2 + 1
4 h φ

2χ2 .

It is by no means guaranteed that this procedure will yield new
unitary fixed points.

It may just be that the only real solutions obtained are the ones
where the coupling h of the quadratic invariants is set to zero.

However, if we apply this procedure with VS3(φ) and VIsing(φ), we
find a new N = 4 fixed point with S = 0.499115, which is one of the
numerically obtained solutions!



The other two N = 4 fixed points

V2(φ) = 1
8 λ (φ1

2 + φ2
2)2 + 1

24 g(φ1
4 + φ2

4)
+ 1

24 x1 φ3
4 + 1

24 x2 φ4
4 + 1

4 z φ3
2φ4

2

+ 1
4 h1(φ1

2 + φ2
2)φ3

2 + 1
4 h2(φ1

2 + φ2
2)φ4

2 + h φ1φ2φ3φ4 .

Symmetry: D4 × Z2

V3(φ) = 1
8 λ1(φ1

2 + φ2
2)2 + 1

8 λ2(φ3
2 + φ4

2)2

+ 1
4 h(φ1

2 + φ2
2)(φ3

2 + φ4
2)

+ 1
6 ĥ

(
φ1

3 − 3φ1φ2
2, φ2

3 − 3φ1
2φ2

)
·
(
φ3, φ4

)
.

Symmetry: O(2)

These new N = 4 fixed points were independently discovered
recently, but their global symmetry groups were not identified
correctly.(Codello, Safari, Vacca & Zanusso; 2020)



Numerically-obtained fixed points for N = 4

This is (very likely) the complete table of N = 4 fixed points:

N = 4 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O4
1
2 2 0 0 O(4) 1(4) 0, 25

T4−
220
441

40
21 0 20

441 S5 × Z2 1(4) 15, 6

BS3∗I 0.499115 1.92406 0.000328 0.036117 S3 × Z2 × Z2 3(1,2,1) 14, 6

B̂O2∗I∗I 0.499144 1.92641 0.000359 0.034994 D4 × Z2 3(1,2,1) 13, 6

O2 ◦ O2 0.499606 1.95458 0.000273 0.021851 O(2) 2(2,2) 12, 5



Fixed points for N = 5

N = 5 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

O5
105
169

35
13 0 0 O(5) 1(5) 55, 0

C5
28
45

8
3 0 4

315 B5 1(5) 40, 14

T5±
5
8

5
2 0 5

56 S6 × Z2 1(5) 39, 11

BI∗O4 0.621937 2.67255 0.000170 0.009605 Z2 × O(4) 2(4,1) 50, 4

BC2∗O3 0.622163 2.66667 0.000118 0.012561 B2 × O(3) 2(3,2) 46, 7

BC3∗O2 0.622230 2.66560 0.000056 0.013157 B3 × O(2) 2(2,3) 41, 9

BI∗O2∗O2 0.623037 2.63897 0.000064 0.026068 Z2 × O(2) × O(2) 3(2,1,2) 40, 8

BC3∗O2 0.623040 2.63881 0.000066 0.026139 B3 × O(2) 2(3,2) 38, 9

BO2∗O3 0.623053 2.63808 0.000082 0.026474 O(2) × O(3) 2(3,2) 37, 6



Irrational fixed points for N = 6

N = 6 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

BI∗O5 0.738216 3.35878 0.002115 0.031859 Z2 × O(5) 2(5,1) 99, 5

BC2∗O4 0.739865 3.33333 0.001752 0.044369 B2 × O(4) 2(3,3) 94, 9

BC3∗O3 0.740572 3.32649 0.001091 0.048323 B3 × O(3) 2(3,3) 90, 12

BC4∗O2 0.740798 3.32758 0.000520 0.048438 B4 × O(2) 2(2,4) 85, 14

BO2∗O4 0.744334 3.32362 0.002037 0.088569 O(2) × O(4) 2(4,2) 94, 8

BI∗O2∗O3 0.744373 3.23709 0.001886 0.088318 Z2 × O(2) × O(3) 3(3,1,2) 90, 11

BC4∗O2 0.7443770 3.23720 0.001868 0.088288 B4 × O(2) 2(4,2) 87, 14

BS4∗O2 0.7443773 3.23721 0.001867 0.088286 S4 × Z2 × O(2) 3(3,1,2) 86, 14

BC2∗O2∗O2 0.744379 3.23726 0.001860 0.088272 B2 × O(2) × O(2) 3(2,2,2) 85, 13

BO2∗O2∗O2 0.744437 3.23901 0.001605 0.087776 (O(2)2 ⋊ Z2) × O(2) 2(4,2) 85, 12

BI∗I∗O2∗O2 0.746610 3.19983 0.000125 0.106603 (Z2 × O(2))2 ⋊ Z2 2(4,2) 83, 13

BS4∗O2 0.746638 3.19991 0.000063 0.106637 S4 × Z2 × O(2) 3(2,3,1) 81, 14

BI∗O2∗O3 0.746962 3.18917 0.000112 0.111220 Z2 × O(2) × O(3) 3(2,3,1) 80, 11

BC3∗O3 0.746991 3.18955 0.000030 0.111147 B3 × O(3) 2(3,3) 78, 12



Irrational fixed points for N = 7

N = 7 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

BI∗O6 0.848454 4.05973 0.008335 0.059079 Z2 × O(6) 2(6,1) 175, 6

BC3∗O4 0.855735 3.97989 0.005630 0.098402 B3 × O(4) 2(4,3) 164, 15

BC3∗C4 0.857146 3.99516 0.000681 0.098711 B3 × B4 2(3,4) 156, 21

BC5∗O2 0.857297 3.98590 0.001676 0.099839 O(2) × B5 2(2,5) 155, 20

BO2∗O5 0.862416 3.82034 0.010508 0.161683 O(2) × O(5) 2(5,2) 169, 10

BI∗O2∗O4 0.863351 3.82328 0.008369 0.162715 Z2 × O(2) × O(4) 3(2,4,1) 164, 14

BC2∗O2∗O3 0.863688 3.82583 0.007459 0.162621 B2 × O(2) × O(3) 3(3,2,2) 160, 17

BC5∗O2 0.863748 3.82704 0.007224 0.162369 O(2) × B5 2(5,2) 158, 20

BC2∗C3∗O2 0.863750 3.82693 0.007230 0.162405 O(2) × B2 × B3 3(3,2,2) 156, 20

BO2∗O2∗C3 0.863776 3.82689 0.007183 0.162473 O(2) × O(2) × B3 3(2,3,2) 155, 19

BI∗O2∗O2∗O2 0.865351 3.85371 0.001426 0.157379 Z2 × O(2) × (O(2)2 ⋊ Z2) 3(2,1,4) 155, 18

BI∗O2∗O2∗O2 0.865360 3.84698 0.002082 0.159497 Z2 × O(2) × O(2) × O(2) 4(2,1,2,2) 154, 18

BO2∗O2∗C3 0.865363 3.85323 0.001450 0.157553 B3 × (O(2)2 ⋊ Z2) 2(3,4) 153, 19

BO2∗O2∗C3 0.865370 3.84723 0.002036 0.159439 O(2) × O(2) × B3 3(3,2,2) 152, 19

BO2∗O2∗O3 0.865427558 3.84923 0.001721 0.158937 O(3) × (O(2)2 ⋊ Z2) 2(3,4) 152, 16

BO2∗O2∗O3 0.865427563 3.84907 0.001738 0.158988 O(2) × O(2) × O(3) 3(3,2,2) 151, 16

BI∗C2∗O4 0.8712962 3.68437 0.002552 0.223496 Z2 × B2 × O(4) 3(4,2,1) 162, 15

BI∗C2∗C4 0.87129773 3.684606 0.002536 0.223423 Z2 × B2 × B4 3(4,2,1) 155, 21

0.87129775 3.684611 0.002536 0.223421 4(2,2,2,1) 153, 20

BC3∗O4 0.8712983 3.68496 0.002516 0.223311 B3 × O(4) 2(4,3) 161, 15

0.8712989 3.70402 0.001456 0.217183 3(4,2,1) 152, 21

0.8712994 3.68487 0.002519 0.223342 3(4,2,1) 153, 19



Irrational fixed points for N = 7 (cont’d)
N = 7 S a0 a2 a4 Symmetry # different γ

and degeneracies #κ < 0, = 0

BI∗O3∗C3 0.8712996 3.68516 0.002503 0.223247 Z2 × B3 × O(3) 3(3,1,3) 157, 18

BC3∗C4 0.871299832 3.6852003 0.00250046 0.2232359 B3 × B4 2(4,3) 154, 21

BI∗C3∗C3 0.871299833 3.6852004 0.00250045 0.2232358 Z2 × B3 × B3 3(3,1,3) 153, 21

BO2∗C2∗C3 0.87129986 3.68521 0.002500 0.223234 O(2) × B2 × B3 3(2,2,3) 152, 20

BO2∗O2∗C3 0.871301 3.68547 0.002483 0.223153 B3 × (O(2)2 ⋊ Z2) 2(4,3) 152, 19

BC3∗T4 0.871304 3.70466 0.001409 0.216987 B3 × S5 × Z2 2(4,3) 151, 21

0.871305 3.70164 0.001581 0.217961 5(1,2,1,2,1) 151, 21

0.87130606 3.70132 0.001598 0.218064 5(1,1,2,2,1) 150, 21

BS5∗O2 0.871306 3.70264 0.00152144 0.217639 S5 × Z2 × O(2) 3(2,4,1) 151, 20

0.871310 3.70227 0.001536 0.217767 4(1,2,1,3) 150, 21

0.871311 3.70195 0.001553 0.217871 4(1,1,2,3) 149, 21

0.871314 3.70006 0.001655 0.218486 5(1,2,2,1,1) 150, 20

0.8713147 3.69972 0.0016724 0.218597 5(1,2,1,2,1) 149, 20

BI∗O2∗O4 0.8713152 3.68073 0.002703 0.224709 Z2 × O(2) × O(4) 3(2,4,1) 161, 14

BI∗I∗O2∗O3 0.871316 3.68092 0.002691 0.224648 Z2 × Z2 × O(2) × O(3) 4(3,2,1,1) 157, 17

BI∗O2∗C4 0.87131659 3.68096 0.002689 0.224637 Z2 × O(2) × B4 3(2,4,1) 154, 20

0.87131661 3.68097 0.002688 0.224636 4(2,2,2,1) 152, 19

BI∗O2∗O2∗O2 0.871318 3.68121 0.002673 0.224559 Z2 × O(2) × (O(2)2 ⋊ Z2) 3(2,4,1) 152, 18

0.8713206 3.68941 0.002233 0.221922 3(4,2,1) 151, 21

0.87132074 3.68949 0.002229 0.221899 5(1,2,1,2,1) 150, 21

0.87132076 3.6895 0.002228 0.221894 5(1,1,2,2,1) 149, 21

BC3∗T4 0.8713233 3.69025 0.002183 0.221659 B3 × S5 × Z2 2(4,3) 150, 21

0.87132340 3.69033 0.002178 0.221632 4(1,2,1,3) 149, 21

0.87132342 3.69035 0.002177 0.221627 4(1,1,2,3) 148, 21



Irrational fixed points for N = 7 (cont’d)

N = 7 S a0 a2 a4 Symmetry # different γ
and degeneracies #κ < 0, = 0

BS5∗O2 0.871337 3.68539 0.00241684 0.223251 S5 × Z2 × O(2) 3(2,4,1) 150, 20

0.87133668 3.68544 0.0024141 0.223236 5(1,2,2,1,1) 149, 20

0.87133669 3.68545 0.0024136 0.223233 5(1,2,1,2,1) 148, 20

BT4∗O3 0.872241 3.68634 0.000557 0.224839 O(3) × S5 × Z2 2(4,3) 150, 18

0.872269 3.68187 0.000737 0.226337 4(1,2,3,1) 149, 18

0.872273 3.68132 0.000758 0.226521 4(1,1,2,3) 148, 18

B̂(O2◦O2)∗O3 0.872388 3.66736 0.001223 0.231267 O(2) × O(3) 3(2,2,3) 147, 17

BO3∗O4 0.8724124 3.65263 0.001847 0.236084 O(3) × O(4) 2(4,3) 160, 12

BI∗O3∗O3 0.8724128 3.65273 0.001842 0.236054 Z2 × O(3) × O(3) 3(3,1,3) 156, 15

BC4∗O3 0.8724129 3.65275 0.001841 0.236049 O(3) × B4 2(4,3) 153, 18

BO2∗O2∗O3 0.872413 3.65286 0.001835 0.236012 O(3) × (O(2)2 ⋊ Z2) 2(4,3) 151, 16

BT4∗O3 0.872418318 3.654206 0.0017663 0.235587 O(3) × S5 × Z2 2(4,3) 149, 18

0.872418321 3.654208 0.0017662 0.235586 4(1,1,2,3) 147, 18

B̂(O2◦O2)∗O3 0.872419 3.65456 0.001749 0.235474 O(2) × O(3) 3(2,2,3) 146, 17



Fixed points for N = 4

Green curve: S = 1
8N − 1

2N (a0 − 1
2N)2.

1.9 1.91 1.92 1.93 1.94 1.95 1.96 1.97 1.98 1.99 2
0.4988

0.499

0.4992

0.4994

0.4996

0.4998

0.5

a0

S4



Fixed points for N = 5

2.5 2.52 2.54 2.56 2.58 2.6 2.62 2.64 2.66 2.68 2.7
0.621

0.622

0.623

0.624

0.625

a0

S5



Fixed points for N = 6

2.8 2.85 2.9 2.95 3 3.05 3.1 3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5
0.73

0.735

0.74

0.745

0.75

a0

S6



Fixed points for N = 7

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2
0.84

0.845

0.85

0.855

0.86

0.865

0.87

0.875

a0

S7



Fixed points in scalar-fermion systems

Consider
∫

d4−εx
(1
2∂μφi∂μφi + iψaσ

μ∂μψa

+ 1
4! λijklφiφjφkφl + (12yiabφiψaψb + h.c.)

)
.

Now we have the Yukawa β functions too and the Yukawa
contributions to the quartic coupling β functions:

βiab = −1
2 εyiab + “(y3)iab” ,

βijkl = −ε λijkl + “(λ2)ijkl” + “(λyy)ijkl” − “(y2y2)ijkl” .

Well-known models of this type include the Gross–Neveu–Yukawa
model and the Nambu–Jona-Lasinio–Yukawa model.

There are suggestions for emergent supersymmetry in d = 3 in
these models.(Fei, Giombi, Klebanov & Tarnopolsky; 2016)



A bound for scalar-fermion theories

Similarly to the scalar case, we can here define invariants that now
involve the Yukawa coupling tensor too.

These invariants satisfy two bounds, one coming from the quartic
and one from the Yukawa β function. These can be combined to

S + 1
2 b2 − 6Y ⩽ 1

8Ns ,

These constraints are universal: they apply to any scalar-fermion
fixed point obtained in the ε expansion at leading order in ε.
Another form is

||λ||2 − 6 ||yiy∗
i ||2 ⩽ 1

8Ns .



Fixed points for Ns = 3, Nf = 4

6. Conclusion

Beginning with the beta functions for the couplings in a general scalar-fermion theory with a
Yukawa-type interaction, we have derived bounds on linear combinations of coupling invariants
which must be obeyed at all fixed points, beginning with either Dirac or Weyl fermions in four
dimensions. When reduced to three dimensions, these theories, presuming we begin with an integer
number of fermions, will always give an even number of three-dimensional Majorana fermions.
Using the Weyl fermion beta functions as a basis, we have also considered a naive extension to
generalise the results to include all possible Yukawa-type theories in three dimensions. We have
also shown that, for a given solution to the Yukawa beta functions, there exists at most one stable
fixed point.

While we presented the numerical results with a simple linear bound in the S-Y plane using
(2.60), this is not the only way to organise the data. Instead, one could plot the fixed points in
the R-T 0 plane using the bound (2.66), which is a direct generalisation of a purely scalar bound [9].
We plot this bound for a few combinations of Ns and Nf in Figs. 17 to 20, which are analogous
to Figs. 4 to 6 in [9]. Here, the fermionic levels do not appear as straight lines, and are instead
distributed throughout the allowed region. Interestingly, one does not find the same clumping
of fixed points as in the purely scalar case, with the points, even at each fermionic level, being
distributed seemingly randomly.
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Fig. 17: Results of numerical search for Ns = 3, Nf = 3 beginning with 10,000 points. This includes a total
of 171 fixed points, and does not include the free fixed point.
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Fixed points for Ns = Nf = 4

�1 �0.8�0.6�0.4�0.2 0 0.2 0.4 0.6 0.8 1
�0.2

�0.1

0

0.1

0.2

0.3

0.4

R

T 0

Scalar-Fermion Fixed Points for Ns = 3 and Nf = 4

0.2

0.4

0.6

0.8

1

Y

Fig. 18: Results of numerical search for Ns = 3, Nf = 4 beginning with 10,000 points. This includes a total
of 518 fixed points, and does not include the free fixed point.
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Fig. 19: Results of numerical search for Ns = 4, Nf = 3 beginning with 10,000 points. This includes a total
of 88 fixed points, and does not include the free fixed point.
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Line defects

In the ε expansion Δφ = 1 − 1
2 ε < 1, and so one can consider

SCFT → SCFT + hi

∫
dτ φi(τ, 0) .

SCFT could involve only scalars, or scalars and fermions.

The question is if there exists an IR defect CFT, where the couplings
hi flow to a fixed point.

The β function of hi for a multi-scalar bulk CFT is

βi = −1
2 εhi +

1
6 λijklhjhkhl .

This has also been computed to next-to-leading order including
fermions in the bulk.(Pannell & AS, 2023)



Line defect in O(N) model

As an example take the O(N) model in the bulk. Then

βi = −1
2 εhi(1 − 1

N+8h
2) , h2 = hihi .

A non-trivial fixed point is found for

h2 = N + 8 .

Notice that we cannot fix the individual vector hi but only its norm.

There is thus a manifold of equivalent theories. The manifold is SN−1

and it arises because the bulk symmetry G = O(N) is broken to
K = O(N − 1) on the defect. SN−1 is the quotient G/K.



Line defect in hypercubic model

Here
βi = −1

2 εhi
(
1 − 1

3Nh
2 − N−4

9N h2
i
)

.

There are non-trivial fixed points when we choose n of the N
couplings to be non-zero and equal in absolute value. There are a
total of 3N solutions that fall into N + 1 universality classes.

For N = 3, for example,

(a) n = 1, K = D4 (b) n = 2, K = Z2
2 (c) n = 3, K = S3



O(N) vs Hypercubic

Depending on N, it could be that the O(N) fixed point is stable, or
the hypercubic fixed point is stable.

V(φ) = 1
8 λ(φ

2)2 + 1
24 g

∑

i

φ4
i

λ

g

G H

I

C

N < Nc

λ

g

G
H

C
I

N > Nc

The critical N is however Nc = 2.89(2), so the RG flow from O(3) to
cubic is very short.



O(3) vs Cubic

The fact that the RG flow between O(3) and cubic is short means
that critical exponents in these models are nearly degenerate, e.g.

ν(C) − ν(O(3)) = −0.0003(3) .

It would be interesting to develop methods that help distinguish
such nearby universality classes. Defects might help.

The one-point function coefficient of the order parameter in the
presence of the defect is given (at next-to-leading order) by

a2
φ = 11

4 + 1
4 (11 log 2 − 1)ε (O(3)) ε→1−→ 4.406 ,

a2
φ = 27

8 + 1
8 (27 log 2 − 179

18 )ε (cubic) ε→1−→ 4.471 .

Higher orders are needed for a solid conclusion.



Summary

We found novel constraints on fixed points in the ε expansion.

We found dozens of previously undiscovered fixed points in
d = 4 − ε.

The nature of these fixed points gives hints about the structure of
the ε expansion (“double trace” perturbations).

These observations provide possible avenues to pursue to fully
classify fixed points in the ε expansion.

Defect deformations can help us distinguish universality classes
that are otherwise separated by short RG flows.

Can we prove that there are no scalar fixed points with just Z2
symmetry in d = 4 − ε besides the Ising model, or find other fixed
points with just Z2 symmetry?


