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Scattering amplitudes 101

How do we usually compute scattering amplitudes?

Perturbation theory (few exceptions)

• QFT: turn Feynman diagram crank

• String theory: correlators in free worldsheet CFT at fixed
genus

Additional (almost implicit) assumption:

• expanding around a trivial field configuration



Strong-field scattering

Suppose we consider scattering in a non-trivial (asymp. flat)
field configuration:

• Background a fixed solution to classical (non-linear)
equations of motion

• Treated non-perturbatively ↔ ‘strong’ background field

• ⇒ use background field theory [Furry, DeWitt, ’t Hooft, Abbott,...]

• Scattering quantum perturbations on strong background
encodes back-reaction/depletion effects



Strong-field QFT describes many interesting scenarios:

• Non-linear regime of QED: Schwinger pair-production,
beam-induced emission, vacuum birefringence

• High-energy regime of QCD: heavy ion collisions,
colour-glass condensate, Balitsky-JIMWLK and BFKL
evolution equations

• Non-linear effects in GR: pair-production by horizons,
self-force expansion, radiation-reaction and memory
effects

...not to mention anything with a cosmological constant:
‘scattering’ in (A)dS

(I’ll only focus on asymptotically flat scenarios)
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However, strong-field scattering is a hard problem

• Background-coupled Feynman rules a nightmare, String
worldsheet CFT not free

• Functional d.o.f. in background ⇒ no rational functions

• Non-pert. effects: e.g., no Huygens’ principle ↔ tails

• S-matrix may not exist as a unitary operator



Example:

γ −→ e− e+ in QED

γ

e− e+In a trivial EM background,
this is process vanishes at tree-level

But non-vanishing
in strong EM background fields!
⇒
non-linear Breit-Wheeler pair production
[Breit-Wheeler, Reiss, Narozhny-Nikishov-Ritus, Ritus]



For instance, in an impulsive plane wave background

e A = −δ(x−) c⊥ x
⊥ dx− , ds2 = 2 dx− dx+ − (dx⊥)2

differential probability is [Ilderton]

PNBW =
α

3π
+
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)

for c0 := |c⊥|/me

All-orders in background electric field c⊥!
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Broad interest

Non-pert. backgrounds induce new physics!

Similar processes (non-linear Compton scattering, photon
helicity flip, trident pair production)

• underpin detection targets at current/upcoming
experiments (EIC, ELI, FACET-II, LHC, LUXE, RHIC)

Strong field scattering has been studied for a long time
since 1930s [Sauter, Volkov, Furry,...]
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State-of-the-art

Despite study for ∼ 100 years, precision frontiers of
strong-field QFT are low:

• QED in plane wave background → 4-point tree
[Baier-Katkov-Strakhovenko, Ritus,...] , 2-point 1-loop [Toll, Ritus]

• QCD in plane wave background → 4-point tree
[TA-Casali-Mason-Nekovar] , 2-point 1-loop [TA-Ilderton]

• GR in plane wave background → 3-point tree
[TA-Casali-Mason-Nekovar]

Roughly NLO/N2LO precision around background



Stark contrast

...with N∞LO information in a trivial background:

all-multiplicity tree- and loop-level formulae for gluon/graviton
scattering

[Parke-Taylor, Witten, Roiban-Spradlin-Volovich, Hodges, Cachazo-Skinner, Cachazo-He-Yuan,

TA-Casali-Skinner, Geyer-Mason-Monteiro-Tourkine,...]

A countably infinite precision gap in even the simplest strong
backgrounds!
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Note:

High-multiplicity scattering in strong backgrounds a serious
problem!

• more external states ⇒ more powers of small coupling

• but also more insertions of background-dressed
wavefunctions and propagators

• background insertions can compensate powers of coupling

High mult. can dominate low mult. in a strong
background
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So, is strong-field QFT just a messy pheno subject?

Of course not!



So, is strong-field QFT just a messy pheno subject?

Of course not!



Today

Try to convince you that:

• strong-field scattering an important theoretical challenge

B where many ‘standard’ methods break down

• all-multiplicity results are possible

B chiral backgrounds w/ functional dof
B remarkably simple results

• teach something about radiative structures in QFT

B collinear splitting and chiral algebras



Basics

What exactly do we mean by a strong-field amplitude?

Denote fields by F , classical action S [F ]

• let Φ be exact solution to e.o.m.s – the background.

• evaluate action on S [Φ + φ], discard all terms less than
O(φ2)

→ obtain background field action S [Φ;φ]
[DeWitt, ’t Hooft, Boulware, Abbott]

governs fluctuations φ on background Φ



Tree-level strong-field amplitudes: {φ1, . . . , φn} solutions
to free, background-coupled eqs with appropriate bndry conds.
Define:

ϕ
[n]
0 :=

n∑
i=1

εi φi

ϕ
[n]
k non-linear recursive solution at O(gk)

Strong-field, n-point tree amplitude:

M(0)
n :=

δnS
[

Φ;ϕ
[n]
max{0,n−3}

]
δε1 · · · δεn

∣∣∣∣∣∣
ε1=···=εn=0
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Upshot

Strong-field amps = multi-linear piece of background field
action

[Schwinger, Boulware-Brown, Arafeva-Faddeev-Slavnov, Abbott-Grisaru-Schaefer, Jevicki-Lee,

Rosly-Selivanov,...]

• ‘perturbiner’ definition extremely robust

• coincides w/ S-matrix when it exists

• when it doesn’t, still encodes expected dynamical content
of scattering [TA-Nakach-Tseytlin, Ilderton-Lindved, Kim-Kraus-Monten-Myers]

• higher loops: use `-loop effective action [Costello]



What does it mean to compute a strong-field amp?

In general, amplitudes look like:

M(0)
n =

∫
dµn︸︷︷︸

measure

integrand︷︸︸︷
I(0)
n Vn︸︷︷︸

wavefunctions

• trivial background: integrals give rational function +
momentum conservation

• general strong fields: cannot perform integrals analytically

• ‘compute strong-field amp’  determine dµn, I(0)
n , Vn

analytically



Example:
Scalar QED: photon emission in plane wave
(‘non-linear Compton scattering’)

APW = −a⊥(x−) x⊥ dx− , a∞ :=

∫ +∞

−∞
dx− a⊥(x−)

M(0)
3 (p → p′ + k) = e δ3

+,⊥(p′ + k − p + e a∞)

+∞∫
−∞

dx−

× ε(k) · P(x−) exp

[
i

∫ x−

ds
k · P(s)

(p − k)+

]
,

for Pµ := pµ − e δ⊥µ a⊥ +
δ−µ
2p+

(2ep · a − e2 a2)



All-order physics

Non-perturbative background → infinite order in coupling
when expanded

Even at low precision/multiplicity!



Theoretical data

This simple fact underpins many interesting theoretical
applications of strong-field scattering:

• Particle-sourced backgrounds ↔ eikonal resummation [’t

Hooft, Amati-Ciafaloni-Veneziano, Kabat-Ortiz, TA-Cristofoli-Tourkine]

B Constrains exact solutions (e.g., ultrarel. Kerr

[TA-Cristofoli-Tourkine] )
B Higher-mult. → eikonal/particle-beam + emission

[Lodone-Rychkov, TA-Ilderton-MacLeod]

• Building blocks for self-force expansion [Ilderton-Torgrimsson,

TA-Cristofoli-Ilderton, TA-Cristofoli-Ilderton-Klisch]

B Probe + emission = self-force waveform

[TA-Cristofoli-Ilderton-Klisch]
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Can we compute high-multiplicity scattering amplitudes
in (any) strong field QFT?

YES!
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Today:

Gluon scattering in self-dual radiative Yang-Mills fields
[TA-Mason-Sharma]

But can also do:

• gravitons in self-dual radiative spacetimes [TA-Mason-Sharma]

• YM form factors in self-dual radiative gauge fields
[Bogna-Mason]

• gluons in self-dual dyons [TA-Bogna-Mason-Sharma to appear]

• gravitons in self-dual Taub-NUT [TA-Bogna-Mason-Sharma to appear]
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What is a SD radiative gauge field? [van der Burg, Newman, Goldberg]

1 Asymptotically flat solution to Yang-Mills equations in
Minkowski space M

2 Uniquely determined by characteristic data at I +

3 Complex, with purely self-dual field strength

Functional dof: Ã(u, z , z̄)

• spin weight +1, conformal weight −1

• otherwise unconstrained (modulo regularity)

F = ∂uÃ du ∧ dz̄ + O(r−1)
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On one hand, a simplified setting...

• self-dual/chiral background

...on the other hand

• still has unconstrained, functional dof

• totally intractable with conventional methods

• encodes backreaction/beam depletion effects [Dinu-Ilderton]

• high-precision on chiral background ⇒ non-chiral
backgrounds

So how do we proceed?
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Twistor theory

From physical data on M to geometric data on PT ⊂ CP3

xαα̇ =
1√
2

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
coords on M

ZA = (µα̇, λα) homogeneous coords on CP3

PT = {ZA ∈ CP3 |λα 6= 0}

Related by incidence relations

µα̇ = xαα̇ λα

x ∈M ↔ X ∼= CP1 ↪→ PT, linear & holomorphic



So what?

First key fact:

Theorem (Ward 1977)
∃ a 1:1-corresp between SD Yang-Mills fields on M and
holomorphic vector bundles E → PT (+ technical conditions)

In real money: E equipped with partial connection
D̄ : Ωp,q(PT,E )→ Ωp,q+1(PT,E ) obeying D̄2 = 0

Locally, D̄ = ∂̄+a , a ∈ Ω0,1(PT,EndE ) , ∂̄a+[a, a] = 0
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So what?

Second key fact:

Theorem (Ward-Wells 1991)
∃ an isomorphism between:
i.) helicity ±1 gluons coupled to SD background gauge field,
and
ii.) H0,1

D̄
(PT,O(±2− 2)⊗ EndE )

In real money: SD background-coupled gluon wavefunctions
represented on PT by

a±(Z ) ∈ Ω0,1(PT,O(±2−2)⊗EndE ) : D̄a± = 0, a± 6= D̄f
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Upshot

Twistor theory provides:

1 a description of SD gauge fields manifesting integrability

2 a natural way to encode gluon wavefunctions

Further simplification for SD radiative backgrounds:

• D̄ = ∂̄ + Ã(µα̇λ̄α̇, λ, λ̄) λ̄α̇ dλ̄α̇ [Newman, Sparling]

• trivial twistor reps for a± still in cohomology [TA-Mason-Sharma]
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Ingredients

For SD radiative backgrounds, E → PT admits holomorphic
trivialization on lines X :

∃H(x , λ) : E |X → CN s.t. H−1D̄|XH = ∂̄|X

Encodes SD rad. field: H−1 λα∂αα̇H = λα Aαα̇(x)

External gluons characterized by helicity, and:

• asymptotic null momenta kαα̇ = κα κ̃α̇
• colour vector Ta



Result

MHV amplitude: gluons r , s negative helicity, all others
positive helicity [TA-Mason-Sharma]

〈r s〉4

〈1 2〉 〈2 3〉 · · · 〈(n − 1) n〉 〈n 1〉

×
∫

d4x tr

(
n∏

i=1

H−1(x , κi) Tai H(x , κi) e
i ki ·x

)

where 〈i j〉 := εαβ κi β κj α



There are many surprising things about this formula:

• All-multiplicity result – arbitrarily many positive helicity
gluons

• Much simpler than näıve expectations: only one
spacetime integral!

• Precision frontier for strong-field scattering

How do we know it’s right?

• Can be derived directly from the Yang-Mills action!

• Passes all other sanity tests: trivial background,
perturbative limit, background gauge invariance
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Also...

• Natural conjectures for full tree-level S-matrix (all
NkMHV amps), passing all sanity tests [TA-Mason-Sharma]

• Similar methods work for SD dyon backgrounds
[TA-Bogna-Mason-Sharma]

A = c

(
dt

r
+

z dz̄ − z̄ dz

1 + |z |2

)
, MHV amp:

δ

(
n∑

i=1

k0
i

)
〈r s〉4

〈1 2〉 · · · 〈n 1〉

∫
d3~x

n∏
i=1

〈ι i〉ei
〈i o〉ei

ei
~ki ·~x

where ια = (1, z), oα = (1, 0), and [c,Tai ] = ei Tai



Collinear limits

Can learn some surprising things from these formulae:

In holomorphic collinear limit 〈i j〉 → 0 [TA-Bu-Zhu to appear]

Mn(. . . , ia, jb, . . .)→ f abc

〈i j〉
Mn−1(. . . ,Pc, . . .)

The same holo. collinear splitting as a trivial background!
[Altarelli-Parisi, Birthwright-Glover-Khoze-Marquard]

Same story for gravitons on SD rad. spacetime
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Chiral algebra

Basis for SD perturbations on a SD rad. background forms a
chiral algebra [TA-Bu-Zhu to appear]{

Sp a
m,r | 2p − 2 ∈ Z≥0, |m| ≤ p − 1, r ∈ Z

}
subject to:

[Sp,a
m,r , S

q,b
n,s ] = f abc Sp+q−1,c

m+n,r+s

The same chiral symmetry algebra, Lg[C2] (‘S-algebra’), as
trivial background

[Guevara-Himwich-Pate-Strominger, Strominger]
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This is surprising, because:

in non-radiative SD backgrounds, splitting functions and chiral
algebras are deformed
[Bittleston-Heuveline-Skinner]



A conjecture

These facts motivate a natural

Conjecture: radiation does not deform IR physics, chirally.

more specifically:

Chiral radiation fields on any background do not deform the
chiral IR physics (splitting functions, celestial OPEs, celestial

chiral algebras)
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Summary

Strong-field scattering:

• playground where perturbative & non-perturbative
interact

• crying out for new, fundamental approaches

• surprising methods (twistor theory, integrability) provide
route to higher-precision

Thanks!
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