Creases, corners and caustics: non-smooth structures on horizons

Harvey Reall

DAMTP, Cambridge University

Maxime Gadioux and HSR, 2303.15512

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

Every point of an event horizon \mathcal{H} belongs to a null geodesic that lies within \mathcal{H} . These geodesics are the *generators* of \mathcal{H} .

A generator cannot have a future endpoint, i.e., it cannot leave $\ensuremath{\mathcal{H}}$ to the future.

Generators can have *past* endpoints:

We assume that spacetime is smooth.

Theorem: \mathcal{H} is an achronal continuous hypersurface. (Achronal: no two points of \mathcal{H} are timelike separated.)

 ${\mathcal H}$ is not smooth except in very special cases e.g. a time-independent black hole.

What is the nature of the non-smoothness of \mathcal{H} ?

There exist examples of spacetimes for which \mathcal{H} is non-differentiable on a dense set (Chrusciel & Galloway 96)

Theorem (Beem & Krolak 97):

- \mathcal{H} is differentiable at p iff p lies on *exactly one* generator
- A point lying on more than one generator is an endpoint (converse untrue)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{H}_{end} be the set of past endpoints of horizon generators.

In explicit examples of gravitational collapse or black hole mergers, \mathcal{H}_{end} consists of a 2d spacelike *crease set* where *pairs* of generators enter \mathcal{H} , together with its boundary, which is a line of *caustic points* (where "infinitesimally nearby generators intersect")

(Hughes et al 94, Shapiro et al 95, Lehner et al 99, Husa & Winicour '99, Hamerly & Chen 10, Cohen et al 11, Emparan & Martinez 16, Bohn et al 16, Emparan et al 17)

In 2+1 dimensions:

Asymmetric gravitational collapse in 3+1 dimensions:

prints crease set

Non-axisymmetric black hole merger (Emparan et al 17):

What features of these spacetimes lead to this simple structure for $\mathcal{H}_{\mathrm{end}}?$

What other structures are possible?

Assumptions

- Spacetime is globally hyperbolic
- → H is smooth at late time: there exists a Cauchy surface Σ to the future of H_{end} such that H_{*} ≡ Σ ∩ H is smooth

(No assumptions about equations of motion.)

We show that \mathcal{H}_{end} is the past *null cut locus* of H_{\star} .

Null cut locus

A null geodesic emitted orthogonally to H_{\star} cannot be deformed to a timelike curve from H_{\star} locally. A null cut point is the first point along a such a null geodesic beyond which it can be deformed into a timelike curve. The null cut locus of H_{\star} is the set of all null cut points.

In Riemannian geometry a cut locus can be very complicated (e.g. fractal). But it can be decomposed into parts with simpler structure (Itoh & Tanaka 1998). We obtained a Lorentzian analogue of this decomposition.

A point in a null cut locus lying on exactly one generator must be a caustic point $_{(Beem \& Ehrlich 81, Kemp 84, Kupeli 85)}$. So we can classify points of \mathcal{H}_{end} as follows:

- caustic points
- non-caustic points
 - "normal crease points": lie on exactly 2 generators
 - points on \geq 3 generators

We prove:

- (a) Normal crease points form a 2d spacelike crease submanifold
- (b) All other points form a set of (Hausdorff) dimension ≤ 1

Creases

Normal crease points form a 2d spacelike crease submanifold.

If a Cauchy surface Σ intersects this submanifold then the horizon cross-section $\Sigma\cap\mathcal{H}$ possesses a crease:

Perestroikas

Let τ be a time function and Σ_{τ} denote a Cauchy surface of constant τ

 $\Sigma_\tau\cap \mathcal{H}$ is the "horizon at time τ ". This will have some arrangement of creases, caustics etc

As τ varies, this arrangement may undergo a qualitative change at a critical value of τ . We call this a *perestroika* (restructuring).

A crease perestroika occurs at a time τ for which Σ_τ is tangent to the crease submanifold.

Near the point of tangency, \mathcal{H} is (part of) the union of two intersecting null hypersurfaces. By introducing Riemannian normal coordinates around this point we can determine the exact local behaviour of \mathcal{H} .

There are three qualitatively different possibilities. Shift τ so that perestroika occurs at $\tau = 0$.

This perestroika describes the nucleation of a component of ${\mathcal H}$ in generic gravitational collapse

Length of crease and angle at crease scale as $\sqrt{ au}$, area scales as au

Collapse of hole in horizon

In examples of gravitational collapse or a black hole merger, some choices of time function give a brief period where horizon has toroidal topology (Hughes *et al* 94, Siino 97, Cohen *et al* 11, Bohn *et al* 16). The "hole in the torus" collapses superluminally. The collapse is described by a perestroika:

Length of crease and angle at crease scale as $\sqrt{-\tau}$.

Black hole merger

This perestroika describes the merger of two (locally) disconnected sections of horizon e.g. two merging black holes.

Crease contribution to black hole entropy

Old idea: some/all of black hole entropy is entanglement entropy of quantum fields across horizon (Bombelli *et al* 86, Srednicki 93, Susskind & Uglum 94). Flat space entanglement entropy exhibits novel features in the presence of a crease (Casini & Huerta 06, Hirata & Takayanagi 06, Klebanov *et al* 12, Myers & Singh 12)

Suggests that a crease might contribute to black hole entropy as

$$\frac{1}{\sqrt{G\hbar}}\int_{\text{crease}}F(\Omega)dt$$

where Ω is angle at crease and F < 0 with $F \propto 1/\Omega$ as $\Omega \rightarrow 0$. Subleading compared to Bekenstein-Hawking entropy $A/4G\hbar$

Consider "hole in the horizon" perestroika: this term remains finite and non-zero as $\tau \to 0-$, so discontinuous at $\tau = 0$. Consistent with second law as discontinuity positive

Which features of \mathcal{H}_{end} are stable under small perturbations?

e.g. spherically symmetric collapse: \mathcal{H}_{end} is a single (caustic) point. This structure for \mathcal{H}_{end} is unstable: if perturbed then a crease submanifold is present.

Siino & Koike 04: classification of points of $\mathcal{H}_{\rm end}$ assuming a particular notion of genericity

Classification reveals that generic caustic points are "of type A_3 "

Generic caustic point: A_3

 A_3 caustic points form spacelike lines. A horizon cross-section generically has isolated A_3 caustic points. If we extend generators beyond their past endpoints we obtain the swallowtail:

Why can't an A_2 caustic occur on \mathcal{H} ? Would violate achronality!

A_3 perestroikas

Occur when Σ_{τ} is tangent to A_3 line.

▲□▶ ▲圖▶ ★国▶ ★国▶ - 国 - のへで

Gauss-Bonnet term in entropy

A "Gauss-Bonnet" term in gravitational action is topological in 4d but contributes to black hole entropy (Jacobson & Myers 93, Iyer & Wald 94)

$$S_{
m GB} = \gamma \int_{H} d^2 x \sqrt{\mu} R[\mu]$$

On smooth horizon $S_{\rm GB} = 4\pi\gamma\chi$ where χ is Euler number of H.

For non-smooth horizon, "regulate" $S_{\rm GB}$, defining via a limit of smooth surfaces to obtain same result. $S_{\rm GB}$ is discontinuous in black hole formation or merger, so only $\gamma = 0$ is consistent with 2nd law (Sarkar & Wall 11)

But: does $S_{\rm GB}$ actually need regulating? No: integral is well-defined for creases, corners and A_3 caustics. No longer topological, continuous in black hole formation/merger.

Still find $\gamma = 0$ if no "higher order" terms in entropy but γ unconstrained if such (EFT) terms are present.

Things I didn't have time to tell you about

Corners, corner perestroika

Behaviour of some higher derivative terms in entropy

Bousso entropy bound

I discussed some of these in the Extreme Universe Colloquium (YouTube)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Maxime Gadioux and HSR, 2303.15512