
Some Applications of

Free Supersymmetric Fields

FPUK Meeting 2023

Matthew Buican

Queen Mary University of London

With: A. Banerjee, C. Bhargava, and H. Jiang:

2306.05507, 2306.12521, 2308.03194,· · ·

August 16, 2023

1



Introduction and Motivation

• In different ways, we are all interested in the space of quantum

field theories, T .
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Introduction and Motivation (cont...)

• Given a particular QFT, we have a sense of what T should
look like locally. But even here it is complicated: infinitely many
(locally irrelevant) directions.

• Global questions—like what is the topology of T ?— seem even
further out of reach.

• To make sense of such questions, we might specialize to spaces
of theories that we can solve completely and that have sufficiently
“few” degrees of freedom: Virasoro minimal models [Vafa]

• Even here, while the c-theorem and Morse theory give hints,
they leave open many possibilities: CP∞, loop space of SU(2),
· · · .
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Introduction and Motivation (cont...)

• But there are some reasons for optimism. For example, super-
symmetry gives some analytical control on non-trivial deforma-
tions.

• As an elementary example, consider a free chiral superfield, Φ,
in 3d N = 2. We can study the interesting deformation

W = λΦ3 , (1)

• RG flow takes us from ΦUV with dimension 1/2 to ΦIR with
dimension 2/3. In language of superconformal representations

A2B̄1[0]
(1/2)
1/2

RG−−→ LB̄1[0]
2/3
2/3 . (2)

• Change in quantum #’s is of order original quantum #’s.
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Introduction and Motivation (cont...)

• SUSY even allows us to “change coordinates” in the space of

theories without trouble and gain analytical insight.

• For example, 4d SU(Nc) N = 1 SQCD with Nf flavors sat-

isfying Nc + 1 < Nf ≤ 3Nc/2 is famously described in the UV

via

Wα , Qia , Q̃ai , (3)

and in the IR via an SU(Nf −Nc) gauge theory with [Seiberg]

W ′α , qi
′
a′ , q̃a

′
i′ , M i′

j′ , W = Mqq̃ . (4)
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Introduction and Motivation (cont...)

• An even more relevant example to us is the Seiberg-Witten

solution to the IR of SU(2) N = 2 SYM
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Introduction and Motivation (cont...)

• All of these examples involve crucial uses of free (chiral) fields

and symmetries.

• Since symmetries are topological in nature, we expect them

to have something important to say about the topology of the

space of QFTs.∗

• The ubiquity of free fields in these cases (and all others we

have constructed to date using SUSY!) motivates us to ask: are

free QFTs connected to all other QFTs in T via continuous

deformations? See also [Douglas],....

∗We also expect them to have something to say about the categorical nature
of this space

7



Introduction and Motivation (cont...)

• Since the above free fields are local, it is natural to specialize
to local theories (i.e., those with EM tensors). This is of course
still a very hard question.

• To make things more concrete, we will focus on the represen-
tations of symmetries and ask the following specific question:

Question [M.B., Jiang]: When is it possible to construct ar-
bitrary unitary multiplets of the superconformal algebra (SCA)
with eight Poincaré supercharges that are compatible with lo-
cality from (continuous deformations of) representations in free
field theories?

• I’ll mainly discuss the most interesting case of d = 4, but we
also studied d = 2,3,5 as I will briefly mention.
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Unitarity and Locality

• To impose unitarity we only act with charges on states

• For example, imposing positivity of the norm on P2|φ〉 leads to
the condition

∆ ≥ (d− 2)/2 . (5)
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Unitarity and Locality (cont...)

• There are various similar computations involving other charges

in the SCA.

• Note: in principle, these need not have corresponding Noether

currents (i.e., they may be non-locally realized)

• For example, the long-range Ising model

H = −J
∑
i,j

1

rds+σ
ij

sisj . (6)

has no EM tensor in the continuum (for 0 ≤ σ < σ∗), but it does

have a conformal point.
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Unitarity and Locality (cont...)

• Similar comments apply to generalized free fields.

• And even more generally, to QFTs living on defects and bound-

aries that are coupled to a bulk QFT.

• Imposing locality for us means that we will impose the existence

of an EM tensor (and a corresponding SUSY multiplet).

• This implies more than the existence of a multiplet. It implies

Ward identities on correlators like

〈O(x)Tµν(y)O†(z)〉 , · · · . (7)
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Unitarity and Locality (cont...)

• It also implies things like the ANEC [Faulkner et. al.], [Hart-

man et. al.] ∫ ∞
−∞

dα〈ψ|Tµν|ψ〉uµuν ≥ 0 . (8)

and various generalizations [Melzer],....

• In principle, locality can rule out many unitary reps of the SCA.

• We will see that this is not the case in low dimensions (d < 4),

but it plays a crucial role in d = 4.
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Spacetime Dimension

• Roughly speaking, we expect the relevant deformations of La-
grangians to be richer the lower in dimension we get.

L =
∫
ddx∂µφ∂µφ+ · · · , (9)

• For example, in 2d we start from
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Spacetime Dimension (cont...)

• In the 2d compact free boson, relevant deformations take us

to the infinitely many Virasoro minimal models. Moreover, the

compact boson theory space is very rich.

• In addition, in 2d, we can often construct not just abstract

representations from free fields but also operator algebras.

• In line with this intuition, we gave a constructive proof involving

N = (4,4) T4 sigma models to show that:

Theorem [M.B. and Jiang]: Any representation of the “small”

2d (4,4) SCA can be realized by free fields.
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Spacetime Dimension (cont...)

• Similarly, in 3d N = 4, we have lots of power for free fields
through mirror symmetry. This fact is reflected in the statement
that many “non-Lagrangian” 4d N = 2 theories have simple 3d
N = 4 Lagrangians.

Theorem [M.B. and Jiang]: Any short representation of the
3d N = 4 SCA can be realized by free fields. Up to continuous
deformations, the same is true for any long multiplet.

• On the other hand, in d > 4 we have a sense that Lagrangians
are less powerful. Indeed, it is possible to show that the A4[0,0](0)

4
5d N = 1 SCA irrep is not constructible via free fields (or contin-
uous deformations), but it does exist in the E2 interacting SCFT
[M.B., Hayling, Papageorgakis].
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d = 4

• 4d is between the less powerful Lagrangians of higher dimen-
sions and the more powerful Lagrangians of lower dimensions.

• Also, N = 2 has an abelian quantum number, U(1)R ⊂ U(1)R×
SU(2)R that makes it a more subtle case.

• Our central conjecture is:

Conjecture: It is always possible to construct arbitrary multi-
plets of the 4d N = 2 SCA from (continuous deformations of)
representations in free field theories.

• We proved some aspects of this conjecture and found a web
of supporting evidence and mutually consistent conjectures more
generally.
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d = 4 (cont...)

• This conjecture interfaces with intuition from studying 4d
N = 2 SCFTs. It also (1) rules out many SCA representations
in local unitary theories and (2) constrains the way allowed rep-
resentations transform under symmetries lying outside the SCA.

• Roughly speaking, there are two kinds of short SCA irreps in
this case. Those that contain chiral operators∗

Ēr(j,0) ⊕ B̂R ⊕ D̄R(j,0) ⊕ B̄R,r(j,0) , (10)

and those that do not†

ĈR(j,̄j) ⊕ C̄R,r(j,̄j) . (11)

∗Conjugate multiplets contain anti-chiral operators.
†There is also a conjugate C multiplet.
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d = 4 (cont...)

• Heuristically, we expect the following picture to hold:

• In many ways, chiral operators behave like free chiral fields.
Indeed, consider chiral operators, O1,2, with quantum numbers

Oi ↔ (∆i, Ri, ri, ji) . (12)

• Up to null relations that don’t follow from statistics, these
operators have a multiplication with quantum numbers that add

O1O2 ↔ (∆1 + ∆2, R1 +R2, r1 + r2, j1 + j2) . (13)

• Therefore, it is reasonable to imagine that all chiral repre-
sentations of the SCA can be realized by free chiral fields (up
to continuous deformations that account for anomalous dimen-
sions).
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d = 4 (cont...)

• In the case of the non-chiral multiplets, it is useful to develop
some intuition for what happens when we have free fields.

• First, from locality, we have a stress tensor multiplet, Ĉ0(0,0).

• More generally, we have an infinite set of closely-related higher-
spin currents, Ĉ0(j,̄j). In particular, they have R = 0. Roughly
speaking these multiplets look as follows

φi∂
nφ̄i + qa∂

nq̄a + · · · . (14)

• A careful analysis of such multiplets reveals they are of type

Ĉ0(j,j) ⊕ Ĉ0(k,k−1) ⊕ Ĉ0(k−1,k) ⊕ Ĉ0(j,j−1/2) ⊕ Ĉ0(j−1/2,j) , (15)

where j ∈ N/2 and k ∈ N.
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d = 4 (cont...)

• More generally, we have ĈR(j,̄j) and C̄R,r(j,̄j). However, for

j + j̄ � R, CFT spectrum takes on properties of a free theory

(e.g., additivity of twists).

•Moreover, in the large spin limit, we can, in some sense “forget”

R and find effective higher spin multiplets. This suggests that,

for large spin, we get the constraints of free fields.

• For j + j̄ . R we can construct any multiplet from free fields.

• This follows from the fact that hypermultiplet primaries are

fundamentals of SU(2)R and vector multiplet primaries are only

charged under U(1)r.
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d = 4 (cont...)

• Let us now consider each representation more carefully and see

how locality enters.

• First consider B̂R multiplets. They parameterize Higgs branches.

Since the hypermultiplet is a fundamental of SU(2)R we have

B̂R ↔ q2R . (16)

• This representation theory fact is compatible with various non-

renormalization theorems.

• These multiplets are also related to states in a 2d VOA via the

correspondence of [Beem et. al.]. We’ll return to this fact.
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d = 4 (cont...)

• Next, consider the Ēr(j,0) multiplets. For j = 0 these are the
multiplets of Seiberg-Witten theory (i.e., they paramterize the
Coulomb branch). In all known examples, they are connected to
free irreps via RG flow.

• The primaries are annihilated by all the anti-chiral supercharges

Q̄iα̇Oα1···α2j = 0 . (17)

• In a free theory, the only fields we can use to construct such
a primary are the vector multiplet primaries, φi (derivatives lead
to descendants in the chiral ring). So, we have

O ↔
∏
i

φi . (18)
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d = 4 (cont...)

• In particular, we are forced to have j = 0.

• More generally, Ward identities of the correlators

〈Ēr,(j,0)Ĉ0(0,0)E−r(0,j)〉 , (19)

are satisfied iff j = 0 [Manenti]. Therefore, j > 0 multiplets are
absent in local unitary 4d N = 2 SCFTs. This is in line with our
heuristic intuition: up to deformations of r, all allowed multiplets
realized in free theories.

• Next, let us consider D̄R(j,0) multiplets. Examples include

φiqa ∈ D̄1/2(0,0) . (20)

They contain extra supercurrents and appear on some mixed
branches. They also appear in associated 2d VOAs.
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d = 4 (cont...)

• In free theories, it is easy to convince oneself that j ≤ R.

• More generally, the ANEC implies that j ≤ R as well [Ma-
nenti, Stergiou, Vichi]. So D̄R(j,0) with j > R is forbidden in a
local unitary theory. This is again compatible with our heuristic
understanding.

• Finally, consider the remaining chiral multiplets B̄R,r(j,0). Ex-
amples include

φnqa ∈ B̄1/2,n(0,0) , n > 1 . (21)

These appear for various reasons including mixed branches, lo-
cal unitary N > 2 SCFTs, higher-rank Coulomb branches, and
certain ’t Hooft anomalies [M.B., Banerjee].
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d = 4 (cont...)

• In free theories, we again have j ≤ R.

• It is easy to extend the ANEC analysis of [Manenti, Stergiou,

Vichi] to show that such multiplets satisfy j ≤ R for r < j + 2.∗

• More generally, all examples we are aware of have B̄ multiplets

coming from OPEs of the following type

B̄ ∈ B̂ × Ē , D̄ × D̄ , Ē × Ē , · · · . (22)

∗Using a more general N = 2 superspace analysis, we suspect this bound
holds for any r compatible with unitarity.
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d = 4 (cont...)

• Or they can arise via gauging∗

Tr(φn
∏
i

Oi) , (23)

with Oi ∈ B̂, Ē, D̄ or of the above B̄ type.

• In any of these cases, we can argue our bounds are satisfied.

• Next, consider the non-chiral ĈR(j,̄j) multiplets. Like the B̂ and

D̄ multiplets, they form part of the “Schur” sector of operators

that correspond to 2d VOA states.

∗There are also non-chiral production channels, but they do not seem to yield
qualitatively new multiplets.
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d = 4 (cont...)

•Most general possible bound compatible with CPT and linearity
is

ar|r|+ a+(j + j̄) + aRR+ a ≤ 0 . (24)

• Locality implies that a ≤ 0. The spectrum of possible higher
spin multiplets implies that a+ = 0. Finally, the existence of

q2R · qq̄ ∈ B̂R × Ĉ0(0,0) ∈ ĈR(0,0) , (25)

for any R implies that aR ≤ 0. Then to get a constraint, WLOG,
we can take ar = 1.

• Combined with the fact that ĈR(j,−1/2)
∼= D̄R+1/2(j,0) we have

|r| = |j − j̄| ≤ R+ 1 . (26)
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d = 4 (cont...)

• This is also the bound satisfied by free fields.

• It is possible to check compatibility of these results with known
conjectures on the generation of the associated 2d VOA by B̂R
states in the case of a theory with a (pure) Higgs branch.

• Also, it is easy to check compatibility of this conjecture with
class S theories with regular punctures built from gauging “trin-
ion” theories.

• Finally, the above results combine together to lead to the
following conjecture for C̄R,r(j,̄j) multiplets [M.B., Jiang]

j ≤ j̄ +R+ 1 , (27)

which is also satisfied by free fields.
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d = 4 (cont...)

• There is additional evidence for the above bound in a spirit

similar to that for the B̄ multiplets.

• What additional implications does this line of thinking lead to?

• For one, it implies there is another generally well-defined limit

of the superconformal index

I(q, u, t) := Tr(−1)F q2juj̄−j−rtR+j̄−j
t→0,q,u fixed−−−−−−−−−→ IGC(q, u) = Tr(−1)F q2juj̄−j−r , (28)

where states satisfying ∆− 2R− 2j̄ − r = 0 contribute; the final

trace is restricted to states satisfying R+ j̄ − j = 0.
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d = 4 (cont...)

• In the case of a free theory of nV abelian vectors and nH hypers,

this index only receives contributions from free vector fields φi,

λ1
i,+, ∂++̇ [Gadde, Rastelli, Razamat]

IGC(q, u) = P.E.

(
u− q
1− q

)
. (29)

• In a Lagrangian theory with freely generated Coulomb branch

we have

I(q, u) =
∏
r

P.E.

(
(u− q)ur−1

1− q

)
. (30)

The multiplets in the arguments are the Ēr generators of the

Coulomb branch chiral ring.
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d = 4 (cont...)

• More generally, we analysed theories that don’t have N = 2
Lagrangians and found that [M.B., Jiang], [Bhargava, M.B.,
Jiang]

IGC(q, u) =
∏
r

P.E.

(
(u− q)ur−1

1− q

)
. (31)

• Therefore, we conjecture [M.B., Jiang]: all local unitary N =
2 SCFTs w/ freely generated Coulomb branches satisfy above.

• Since the above indices are generated by Ēr multiplets, they are
independent of flavor (this follows from general OPE arguments)
and so

∂aIGC = 0 . (32)
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d = 4 (cont...)

• It is then natural to conjecture that any multiplet contributing

to IGC are flavor neutral. This leads to the conclusion that

[M.B., Jiang]

C̄j−j̄−1,r(j,̄j) ⊕ B̄j,r(j,0) , (33)

are neutral under any flavor symmetry in any irreducible local

unitary 4d N = 2 SCFT with a freely generated Coulomb branch.

• Note that we can also take u→ 0. This leads to a “reduced”

Macdonald limit of the index. To get a non-trivial index, we

clearly need generators with r = 1. So it is natural to conjecture

that such an index is non-trivial iff the theory has free abelian

vector multiplets [M.B., Jiang].
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d = 4 (cont...)

• Therefore, by looking at the most general multiplets that can

contribute in this limit, we conjecture that they can only appear

in theories with free vectors

Ĉj−j̄−1(j,̄j) ⊕ D̄j(j,0) . (34)

• The case j = j̄ + 1 is associated with higher-spin symmetries

and hence free theories [Maldacena, Zhiboedov]. Here we see

a much more general set of multiplets that are associated with

free theories. This should lead to implications for the bootstrap.

• There are also interesting implications for a vertex algebra,

“
√

VOA,” associated with the VOAs of [Beem et. al.]
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Conclusions and Further Directions

• We used representation theory to learn new things about the
space of SCFTs with 8 Poincaré supercharges.

• Would be interesting to connect our results further with the
topology of space of QFTs and also with more categorical con-
structions.

• When particular SCA irreps can’t be realized by free fields but
correspond to deformation of an irrep realized by free fields, is
it possible to associate a “closest” free irrep? Interpretation in
terms of RG interfaces or more general conformal interfaces?

• Spin plays an important role in our bounds. What if rotational
invariance is relaxed, can we say interesting things for such the-
ories?
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