Workshop on Cold Rydberg Chemistry

Contribution ID: 9

Type: Poster

Ionization energy of the metastable 2 ¹S₀ state of ⁴He from Rydberg-series extrapolation

Tuesday 23 November 2021 17:30 (45 minutes)

In a recent breakthrough in first-principles calculations of two-electron systems, Patkóš, Yerokhin and Pachucki [PRA **103**, 042809 (2021)] have performed the first complete calculation of the Lamb shift of the helium $2^{3}S_{1}$ and $2^{3}P_{J}$ triplet states up to the term in $\alpha^{7}m$. Whereas their theoretical result of the frequency of the $2^{3}P \leftarrow 2^{3}S$ transition perfectly agrees with the experimental value, a more than 10σ discrepancy was identified for the $3^{3}D \leftarrow 2^{3}S$ and $3^{3}D \leftarrow 2^{3}P$ transitions, which hinders the determination of the He²⁺ charge radius from atomic spectroscopy that is necessary to complement the recent α -particle charge radius determination using muonic helium from J. Krauth *et al.* [Nature **589**, 527531 (2021)].

We report on the determination of the ionization energy of the metastable $2^{1}S_{0}$ state of He (960 332 040.491(32) MHz) by Rydberg-series extrapolation through the determination of the

frequencies of 21 transitions from the $2 \, {}^{1}S_{0}$ state to np Rydberg states with principal quantum number n in the range between 24 and 102, yielding a relative uncertainty of 3×10^{-11} [PRL **127**, 093001 (2021)]. A one-photon (~312 nm) excitation scheme is used for Rydberg-state excitation of metastable He atoms in a doubly skimmed supersonic beam. The absolute frequency calibration is achieved using a frequency comb referenced to a GPS-disciplined Rb clock.

This absolute measurement is used in combination with the $2^{3}S_{1} \leftarrow 2^{1}S_{0}$ interval measured by van Rengelink *et al.* [Nat. Phys. **14**, 1132 (2018)] and the $2^{3}P \leftarrow 2^{3}S_{1}$ interval measured by Zheng *et al.* [PRL **119**, 263002 (2017)] and Cancio Pastor *et al.* [PRL **92**, 023001 (2004)] to derive experimental ionization energies of the $2^{3}S_{1}$ state (1 152 842 742.640(32) MHz) and the $2^{3}P$ centroid energy (876 106 247.025(39) MHz). These values reveal disagreements with the $\alpha^{7}m$ Lamb shift prediction by 6.5σ and 10σ , respectively, and support the suggestion by Patkóš *et al.* of an unknown theoretical contribution to the Lamb shifts of the $2^{3}S$ and $2^{3}P$ states of He.

Author: Mrs CLAUSEN, Gloria (ETH Zürich)

Co-authors: Dr JANSEN, Paul (ETH Zürich); SCHEIDEGGER, Simon (ETH Zurich); Mr AGNER, Josef A. (ETH Zürich); Mr SCHMUTZ, Hansjürg (ETH Zürich); Prof. MERKT, Frédéric (ETH Zürich)

Presenter: Mrs CLAUSEN, Gloria (ETH Zürich)

Session Classification: Poster Session