Fully Differential Study of Post-Collision Effects in Ionization of H₂ by Proton Impact

M. Dhital

- S. Bastola
- **B.R.** Lamichhane
- A. Silvus
- E. Ali
- D.H. Madison M. S.

Missouri S&T

University of Science & Technology A. Hasan

UAE University

R. Lomsadze *Tbilisi State University*

M.F. Ciappina *ELI, Prague* Quantum-mechanical few-body problem one of the most fundamentally important, unsolved problems in Physics!

Schrödinger equation not solvable for more than two particles, <u>even when underlying forces are precisely</u> <u>known</u>

Dynamic few-body systems like fragmentation processes

Atomic fragmentation particularly suitable because:

- underlying interaction (electromagnetic)
 understood
- can select systems with small particle number ($\approx 3 - 5$) \Rightarrow kinematically complete exeperiments

Ionization of H₂ by p impact

Perturbative treatment: expand T in powers of interaction potential V (Born series)

 $T = <\!\!e^{ik_{f}r} \phi_{f} |V| e^{ik_{i}r} \phi_{i} > + <\!\!e^{ik_{f}r} \phi_{f} |VG_{0}V| e^{ik_{i}r} \phi_{i} > +$

 $< e^{ik_{f}r} \phi_{f} |VG_{0}VG_{0}V| e^{ik_{i}r} \phi_{i} > + \dots$

In perturbation theory understanding few-body dynamics means describing relative contributions of higher- vs first-order terms

Particularly important higher-order process: PCI

> **PE – ET – PE** sequence

PE – PT – PE sequence

Alternative to Born Series: Distorted wave methods

Higher-order contributions treated in wavefunction of system Break up three-body system into 3 two-body systems:

The continuum eigenstate of each twobody subsystem is a (distorted) Coulombwave. Approximation: Represent total wavefunction as product of three Coulomb-waves $\Psi_f = C_{Pe}C_{PT}C_{Te}$

Conceptually, all interactions treated to all orders, <u>but</u> 3C wavefunction ignores correlations between particle pairs \Rightarrow only accurate if one particle far from other two \Rightarrow at small distances none of higher-order terms described accurately

PCI maximizes for $v_{el} = v_p$, no kinematically complete data available!

Experimental Setup, 75 keV p + H₂

Complete projectile and recoil-ion moment measured. Electron momentum from conservation laws \Rightarrow kinematically complete \Rightarrow FDCS

Three-Dimensional Fully Differential Single Ionization Data

Blue: Scattering planeRed: electron emission planedefined by p_o and p_fdefined by p_o and p_e

Quantities fixed: $\phi_p = 0$, q, $\phi_e = 0$, and E_e , spectra plotted as a fct. of θ_e

FDCS for $\theta_p = 0.1$ mrad

Red curves: 3DW model Blue curves: CDW-EIS model

```
\theta_{\rm p} = 0.2 \, {\rm mrad}
```


 $\theta_{\rm p} = 0.325$ mrad

 $\theta_{\rm p} = 0.55$ mrad

Energy-dependence of FDCS for $\theta_e = 0^{\circ}$

⇒Large discrepancies between experiment and between two conceptually very similar theoretical models!

At small electron energies much smaller discrepancies and theories agree with each other \Rightarrow at velocity matching FDCS particulally sensitive to details of few-body dynamics!

Possible causes for discrepancies:

- a) PT interaction not accurate in theory
 3C wavefunction only accurate if at least 1 particle far from other 2. PE PT PE sequence selects events where all 3 particles are close to each other
- b) Capture channel not included in theory ⇒ due to unitarity capture is erroneously counted as ionization in transition amplitude
- c) Projectiles treated as fully coherent waves, but in reality due to intrinsic momentum spread coherence length is finite

- \Rightarrow What type of theory is needed?
- a) non-perturbative because slow projectiles cannot be regarded as small perturbation ⇒ large basis set needed
- b) should incorporate two-center basis set including bound projectile states to account for capture
- c) projectiles should be described by wave packet with a width reflecting the coherence length

Non-perturbative models with two-center basis sets for ion impact have been developed recently (Kadyrov et al., Walters et al., Pindzola et al.). First results on FDCS for H_2 can be expected soon.

Incorporating wave packets in such models very challenging

Conclusions

- Fully differential cross sections for ionization in 75 keV p + H₂ measured.
- Major discrepancies between experiment and theory and between two conceptually very similar models.
- At matching velocity FDCS very sensitive to details of fewbody dynamics.
- Potential problems with perturbative methods:
 a) capture not included
 - b) 3C wavefunction not accurate when all particles closec) projectile coherence not realistically described
- What is needed: non-perturbative calculations with twocenter basis set and wave packet describing projectile.

Black: FBA no PCI Blue: only PE-ET-PE Red: PE-ET-PE and PE-PT-PE

 \Rightarrow **PE** – **ET** – **PE** sequence dominant PCI channel in SBA-2C

