24th European Conference on Few-Body Problems in Physics

Measurement of spin correlation coefficients in *p*-3He scattering at 65 MeV

Minami Inoue

Department of Physics, Tohoku University, Japan

Collaborators

> Tohoku univ., Japan

M.Inoue, K.Sekiguchi, K.Miki, A.Watanabe, S.Nakai, S.Shibuya, D.Sakai, Y.Utsuki

> RCNP Osaka univ., Japan

K.Hatanaka, H.Kanda, H.J.Ong

> Kyusyu univ., Japan

T. Wakasa, S. Goto, S. Mitsumoto, D. Inomoto, H. Kasahara

> KEK, Japan

T.Ino

> RIKEN, Japan

H.Sakai

Miyazaki univ., Japan

Y.Maeda, K.Nonaka

> NIRS, Japan

T.Wakui

> CYRIC Tohoku univ., Japan

M.Itoh

- I. Introduction
- II. Experiment
- III. Results
- IV. Summary

- I. Introduction
- II. Experiment
- III. Results
- IV. Summary

Nucleon-Nucleon force

In 1935, the first theoretical insight was given as meson exchange theory by Yukawa. In 1990's, the Nucleon-Nucleon potentials have achieved to realistic ones. (e.g. CD Bonn, AV18, Nijmegen)

But in $A \ge 3$ system, some aspects are not explained by the NN potential only. (e.g. few nucleon system, nucleon binding energies, equation of state of nucleon matter)

Three-nucleon force

The force acting between three-nucleons is considered to be essential for fully understanding nucleon phenomena.

(e.g. Fujita-Miyazawa, Urbana IX, Tucson-Melbourne)

Few nucleon scattering

It is a good probe to study the dynamical aspects of nuclear forces.

- momentum dependence
- spin dependence
- isospin dependence

Nucleon-deuteron scattering ...

□, ○ exp. data

- ─ NN(AV18)+3NF(UrbanaIX)
- NN(CD Bonn, AV18, Nijmegen I, II)+3NF(TM' 99)
- NN(CD Bonn, AV18, Nijmegen I, II)

K. Sekiguchi et al., PRC 65 034003 (2002).

3NFs are necessary to explain the data for *N-d* elastic scattering.

Energy dependence of *N-d* elastic scattering

3NFs effects are clearly seen in the cross section minimum at intermediate energies (E > 60 MeV).

- •, o exp. data
- NN(AV18)+3NF(UrbanaIX)
- NN(CD Bonn, AV18, Nijmegen I, II)+3NF(TM' 99)
- NN(CD Bonn, AV18, Nijmegen I, II)

K. Sekiguchi et al., PRC 65 034003 (2002).

It is interesting to study 3NFs at intermediate energies.

In *d-p* scattering system, the total isospin is limited to T = 1/2.

We have a strong interest in the isospin dependence of 3NFs. (e.g. neutron-rich nuclei and neutron matter)

p-³He scattering system

- Approaching the effects of 3NFs in 4N scattering system
- The simplest system to approach the T = 3/2 channel

We performed p- 3 He scattering at intermediate energies and measured spin observables.

This work

- \triangleright By using the 65 MeV polarized proton beam and the polarized 3 He target, the experiment of p- 3 He elastic scattering was performed.
- \triangleright The measured angles were $\theta_{\text{Lab.}} = 35^{\circ}$, 70° , 115° . ($\theta_{\text{C.M.}} = 47^{\circ}$, 89° , 133°)
- \triangleright The observables were A_y , A_y^T , C_{yy} .

Spin correlation coefficient C_{yy} is obtained by bombarding the polarized proton beam on the polarized ³He target and measuring the asymmetry of the scattered particles.

- I. Introduction
- II. Experiment
- III. Results
- IV. Summary

p−³He scattering at 65 MeV

RCNP (Research Center for Nuclear Physics), Osaka University, Japan

- Polarized proton beams were provided by the polarized ion source.
- The beam was accelerated by the AVF cyclotron up to 65 MeV.
- The beam bombarded the polarized ³He target.
- Scattered protons were detected by the *dE–E* scintillators.
- The beam polarization was measured by using p-d elastic scattering.

Beam Line Polarimeter

$$Y_L^u = \frac{d\sigma}{d\Omega} n I^u (1 + A_y p_N^u) \Delta \Omega_L$$

$$Y_L^d = \frac{d\sigma}{d\Omega} n I^d (1 + A_y p_N^d) \Delta \Omega_L$$

$$Y_R^u = \frac{d\sigma}{d\Omega} n I^u (1 - A_y p_N^u) \Delta \Omega_R$$

$$Y_R^d = \frac{d\sigma}{d\Omega} n I^d (1 - A_y p_N^d) \Delta \Omega_R$$

- The beam polarization was measured by using the reaction of *p-d* elastic scattering.
- Scattered protons and recoiled deuterons were detected in a kinematical coincidence condition.

$$A_y = -0.539$$
, $dA_y = 0.025$
H.Shimizu et al., Nuclear Physics A382 (1982) 242-254.

Target	Thin film of CD ₂ (14.8 mg/cm ²)
Detector	plastic (20 mm ^t ×35 mm ^H ×20 mm ^w) + PMT(H7415)
Measured angles	$\theta_p = 70^\circ, \theta_d = 40^\circ$

n: the number of targetsI: the beam current

The beam polarization

Detector's solid angle is time independently constant.

$$\frac{\Delta\Omega_L}{\Delta\Omega_R} = \frac{I^d Y_L^u - I^u Y_L^d}{I^u Y_R^d - I^d Y_R^u} = \text{const.}$$

Using this constant, we extract spin observables without using the information of beam intensity.

$$\begin{split} p_N^u &= \frac{1}{A_y} \frac{Y_L^u/Y_R^u - \Delta\Omega_L/\Delta\Omega_R}{Y_L^u/Y_R^u + \Delta\Omega_L/\Delta\Omega_R} \;, \\ p_N^d &= \frac{1}{A_y} \frac{Y_L^d/Y_R^d - \Delta\Omega_L/\Delta\Omega_R}{Y_L^d/Y_R^d + \Delta\Omega_L/\Delta\Omega_R} \;. \end{split}$$

- > Typical polarizations are $p_y^{\uparrow} \sim 50\%$, $p_y^{\downarrow} \sim 20\%$.
- > Statistical uncertainties of each run are ~ 0.07 at most.

Polarized ³He target

Polarized ³He target

glass thickness	sides 1 mm ^t , windows 0.5 mm ^t
material	GE180 glass
contents	³ He (3atm, ~2 mg/cm ²), N ₂ (~0.1 atm), A small amount of Rb, K

AH-SEOP method: to polarize ³He

- i. Circularly polarized laser polarizes Rb atoms by optical pumping under the static magnetic field.
- ii. K atoms are polarized by spin exchange collision with Rb atoms.
- iii. ³He nucleus are polarized by hyper-fine interactions with K atoms.

Polarized ³He target

AFP-NMR method: to measure ³He polarization

Rb-EPR method: to calibrate ³He polarization

For more details, see talk by A. Watanabe

> Typical polarization is $p_y^{3\text{He}} \sim 40 \%$.

Detector system for p- 3 He scattering

Specification of detector

θ_{Lab} [deg.]	dE [mm ^t]	TE [mm ^t]	$\Delta\Omega$ [msr]
35	1.0	50	0.11
70	0.5	50	0.20
115	0.2	50	0.43

- Scattered protons were detected by dE-TE detectors which are consisted of NaI(Tl) and plastic scintillators.
- Double slit collimators were adopted.

- I. Introduction
- II. Experiment
- III. Results
- IV. Summary

Energy spectra

Events for p- 3 He elastic scattering are clearly seen.

Background Subtraction

- To estimate the ambiguity of background subtraction, the integrating range of a elastic scattering peak was changed from $\pm 1\sigma$ to $\pm 3\sigma$.
- ➤ Values of spin observables were changed less than 0.02.

Extraction of spin observables

Polarized cross sections for the left side are expressed as,

$$L_{\uparrow\uparrow} = L_0(1 + p_y^{\uparrow}A_y + p_y^TA_y^T + p_y^{\uparrow}p_y^TC_{yy})$$

$$L_{\uparrow\downarrow} = L_0(1 + p_y^{\uparrow}A_y - p_y^TA_y^T - p_y^{\uparrow}p_y^TC_{yy})$$

$$L_{\downarrow\uparrow} = L_0(1 - p_y^{\downarrow}A_y + p_y^TA_y^T - p_y^{\downarrow}p_y^TC_{yy})$$

$$L_{\downarrow\downarrow} = L_0(1 - p_y^{\downarrow}A_y - p_y^TA_y^T + p_y^{\downarrow}p_y^TC_{yy})$$
beam target pol. pol. pol.

$$A_{y} = \frac{L_{\uparrow\uparrow} + L_{\uparrow\downarrow} - (L_{\downarrow\uparrow} + L_{\downarrow\downarrow})}{p_{y}^{\downarrow}(L_{\uparrow\uparrow} + L_{\uparrow\downarrow}) + p_{y}^{\uparrow}(L_{\downarrow\uparrow} + L_{\downarrow\downarrow})}$$

$$A_{y}^{T} = \frac{1}{p_{y}^{T}} \frac{p_{y}^{\downarrow}(L_{\uparrow\uparrow} - L_{\uparrow\downarrow}) + p_{y}^{\uparrow}(L_{\downarrow\uparrow} - L_{\downarrow\downarrow})}{p_{y}^{\downarrow}(L_{\uparrow\uparrow} + L_{\uparrow\downarrow}) + p_{y}^{\uparrow}(L_{\downarrow\uparrow} + L_{\downarrow\downarrow})}$$

$$C_{yy} = \frac{1}{p_{y}^{T}} \frac{L_{\uparrow\uparrow} - L_{\uparrow\downarrow} + L_{\downarrow\uparrow} - L_{\downarrow\downarrow}}{p_{y}^{\downarrow}(L_{\uparrow\uparrow} + L_{\uparrow\downarrow}) + p_{y}^{\uparrow}(L_{\downarrow\uparrow} + L_{\downarrow\downarrow})}$$

The way of extraction for right side is same.

Spin observables

 $A_{v}^{(p)}$

- > Statistical errors are only shown.
- > Overall agreements are good.

 $A_y^{(^3\text{He})}$

- > Statistical errors are only shown.
- ➤ Large difference is found at backward two angles.

^{*}Calculations by A. Deltuva, private communication

Spin observables

 $\theta_{\rm CM}$ [deg.]

*Calculations by A. Deltuva, private communication

- > Statistical errors are only shown.
- ➤ Large difference is found at backward two angles.
- \triangleright Sizable effects of \triangle -isobar (3NFs) are predicted.

- I. Introduction
- II. Experiment
- III. Results
- IV. Summary

Summary

- > 3NF plays important roles to understand various nuclear phenomena.
- For study of 3NF properties, we have measured p ³He scattering at 65 MeV by using the polarized proton beam and the polarized ³He target. (@RCNP, Osaka Univ., Japan)
- \triangleright Measured angles were $\theta_{Lab} = 35^{\circ}$, 70° , 115° .($\theta_{C.M.} = 47^{\circ}$, 89° , 133°)
- \triangleright By comparing the data with the theoretical calculations, large discrepancies are found at the backward angles for A_y^{T} and C_{yy} .
- As the next step, we are planning to measure a complete set of spin correlation coefficients in a wide angular range.