

Quasi-free limit in the deuteron-deuteron three-body break-up process

Nasser Kalantar-Nayestanaki Giving the talk on behalf of Reza Ramazani Sharifabadi

24th European Conference on Few-Body Problems in Physics, Guilford, England, 3 September 2019

kvi - center for advanced radiation technology

- ➤ N-N interaction is described by exchange of mesons.
- High-precision NN models were developed based on Yukawa's theory:

CD-Bonn 2000

Argonne *V*18 (AV18)

Nijmegen I, II

• • • • •

kvi - center for advanced radiation technology

- ➤ Variational Monte-Carlo calculations of binding energies using NN and 3N potentials as input
- ➤ Two-nucleon force already gives discrepancies for A>2.
- Additional three-nucleon effects (3NF) generally gives a better agreement with experiment.

kvi - center for advanced radiation technology

- Two-nucleon force shows discrepancies also in scattering phenomena.
- Additional 3NF generally gives a better agreement with experimental results for cross sections, but for the spin observables shows different trends.

kvi - center for advanced radiation technology

- Two-nucleon force shows discrepancies also in scattering phenomena.
- Additional 3NF generally gives a better agreement with experimental results for cross sections, but for the spin observables shows different trends.

 kvi - center for advanced radiation technology

> 3NF effects are significantly enhanced in magnitude in systems with more than 3 bodies.

22/00/10

kvi - center for advanced radiation technology

- > 3NF effects are significantly enhanced in magnitude in systems with more than 3 bodies.
- One needs to expand the database to fourbody systems.

7 7

kvi - center for advanced radiation technology

- > 3NF effects are significantly enhanced in magnitude in systems with more than 3 bodies.
- One needs to expand the database to fourbody systems.

dd elastic scattering dd break-up					_
	100	200		100	200
$d\sigma \ d\Omega$		•	$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$		
iT ₁₁	•	•	₫ _{iT11}		
T ₂₂		•	T ₂₂		
T ₂₀		•	T ₂₀		
T ₂₁		· · · · · · · · · · · · · · · · · · ·	T ₂₁		
K _i '			$K_i^{j'}$		
K _y ^y ,			K _{yy}		
C _{ij}			C _{ij}		
				: : :	

22/00/10

Experimental Setup

 kvi - center for advanced radiation technology

BINA (Big Instrument forNuclear-Polarization Analysis)

- > Forward Wall:
 - ✓ MWPC (Multi-Wire Proportional Chamber)
 - \checkmark Δ E-E detectors
- Backward Ball:
 - ✓ 149 Phoswich Scintillators
 - Simultaneously as detector and scattering chamber

0.2/0.1/10

Experimental Setup

kvi - center for advanced radiation technology

BINA (Big Instrument forNuclear-Polarization Analysis)

- > Forward Wall:
 - ✓ MWPC (Multi-Wire Proportional Chamber)
 - \checkmark Δ E-E detectors
- Backward Ball:
 - ✓ 149 Phoswich Scintillators
 - Simultaneously as detector and scattering chamber

02/00/40

Outline of data analysis

kvi - center for advanced radiation technology

d-d scattering channels:

 \rightarrow $d+d \rightarrow d+d$, d-d elastic channel

ightharpoonup d+d o d+p+n, Three-body break-up channel

 $\rightarrow d + d \rightarrow ^{3}H + p$, neutron transfer channel

 \rightarrow $d+d \rightarrow$ ³He + n, proton transfer channel

ightharpoonup d+d
ightharpoonup p+p+n+n, four-body break-up

03/09/19

1

kvi - center for advanced radiation technology

Kinematics of three-body break-up channel:

Quasi-free limit:

kvi - center for advanced radiation technology

Quasi-free domain:

Top panel: Correlation between neutron energy and Mandelstam variable u as the square of the four-momentum transfer between the incident deuteron and the final-state proton, $u = (p_{beam} - p_p)^2$.

➤ Bottom panel: Corresponding PLUTO simulation

kvi - center for advanced radiation technology

- Missing-mass spectrum of neutron to investigate the quality of energy calibration and the contribution of the remaining background.
- A peak around 939.50 ± 0.05 MeV is observed.
- Suppress the background using a cut around the nominal neutron mass with $\pm 3\sigma$.

kvi - center for advanced radiation technology

Analyzing powers for *d-d* break-up channel:

$$\sigma(\xi,\phi) = \sigma_0(\xi) \left[1 + \sqrt{3}p_Z Re(iT_{11}(\xi))\cos(\phi) - \frac{1}{\sqrt{8}}p_{ZZ}T_{20}(\xi) - \frac{\sqrt{3}}{2}p_{ZZ}Re(T_{22}(\xi))\cos(2\phi)\right]$$

kvi - center for advanced radiation technology

Comparison between the reconstructed momentum distribution of the missing neutron for different intervals of Mandelstam variable *u* and the expected momentum distribution of the nucleon derived from the wave function of deuteron.

kvi - center for advanced radiation technology

 \triangleright Analyzing powers as a function of u for different intervals of neutron energy

Paper by R. Ramazani Sharifabadi accepted yesterday by EPJA.

Summary

- Precision measurements of analyzing powers in low neutron momentum have been performed.
- In the limit of vanishing neutron momentum and at large deuteron-proton momentum transfer (small u), the data agree well with the measured and theoretically predicted spin observables of the elastic deuteron-proton scattering process.
- The agreement deteriorates rapidly with increasing neutron momentum and/or decreasing momentum transfer from the deuteron beam to the outgoing proton (large u).

Dutch-Polish collaboration with BINA

- R. Ramazani-Sharifabadi, M.T. Bayat, N. Kalantar-Nayestanaki,
- St. Kistryn, A. Kozela, M. Mahjour-Shafiei, J. G. Messchendorp,
 - M. Mohammadi-Dadkan, A. Ramazani-Moghaddam-Arani,
 - E. Stephan, and H. Tavakoli-Zaniani

Thank you for your attention