Response functions and cross sections for inclusive neutrino scattering off ²H, ³H and ³He

Alessandro Grassi

Jagiellonian University

September 5, 2019

Table of contents

- Introduction
 - Kinematics
 - R-functions
 - Cross section
- 2 R-function
 - (Q, E_{CM}) grid
 - Physical constraints
 - Numerical approach

3 Results

- Reaction on ²H
- Reactions of ³H and ³He
- 4 Conclusions and outlook

Kinematics R-functions Cross section

Why neutrinos?

Why neutrino scattering is important?

- probe for weak interaction and electroweak unification
- knowledge about neutrino scattering off nuclei is a prerequisite for investigations of neutrino masses and their oscillations

Theoretical approach

- semi-phenomenological: AV18 NN potential (or other semi-phenomenological ones) and related current operators
- potentials and currents derived from chiral effective field theory (χEFT): problems with regularizations

Kinematics R-functions Cross section

Our framework

Ingredients of our work

- the momentum-space approach allows us to easily work with neutrino reactions off the deuteron and trinucleons: ³He and ³H
- currently we use the semi-phenomenological AV18 NN potential
- we employ only the one single nucleon current operator
- we treat the hadronic arm in the non-relativistic manner

Kinematics R-functions Cross section

What else?

Some remarks

- $\chi {\rm EFT}$ potentials are provided in momentum space and will be easily incorporated in our future calculations
- relativistic effects are supposed to be of no great importance for the considered neutrino energies
- possibility to **avoid partial wave representation** of nuclear states by using the so-called "three dimensional" calculations

Alessandro Grassi

Kinematics R-functions Cross section

Studied reactions

$$\nu_{e} (\bar{\nu}_{e}) + {}^{2}\mathrm{H} \rightarrow \nu_{e} (\bar{\nu}_{e}) + {}^{2}\mathrm{H}$$
$$\nu_{e} (\bar{\nu}_{e}) + {}^{2}\mathrm{H} \rightarrow \nu_{e} (\bar{\nu}_{e}) + n + p$$
$$\nu_{e} + {}^{2}\mathrm{H} \rightarrow e^{-} + p + p$$
$$\bar{\nu}_{e} + {}^{2}\mathrm{H} \rightarrow e^{+} + n + n$$

A=3 Neutral current (NC) breakup reactions

$$\nu_{e} (\bar{\nu}_{e}) + {}^{3}\text{H} \rightarrow \nu_{e} (\bar{\nu}_{e}) + n + {}^{2}\text{H} (+ n + n + p)$$

$$\nu_{e} (\bar{\nu}_{e}) + {}^{3}\text{He} \rightarrow \nu_{e} (\bar{\nu}_{e}) + p + {}^{2}\text{H} (+ p + p + n)$$

Charged current (CC) breakup reactions

$$ar{
u}_e + {}^3 \mathrm{H}
ightarrow e^+ + n + n + n$$

 $ar{
u}_e + {}^3 \mathrm{He}
ightarrow e^+ + n + {}^2 \mathrm{H} (+ n + n + p)$

Response functions and cross sections for inclusive neutrino

Kinematics R-functions Cross section

Kinematics

Energy-momentum conservation

$$E + M_{ini} = \sqrt{\mathbf{k}'^2 + m_\ell^2} + \sum_i \sqrt{\mathbf{p_i}^2 + M_i^2}$$
$$\mathbf{k} = \mathbf{k}' + \sum_i \mathbf{p_i}$$

To evaluate the total cross section we need to know the boundaries for $E' = \sqrt{\mathbf{k}'^2 + m_\ell^2} \Rightarrow$ $E'_{max}: \qquad S_{nuc} = (\sum_i p_i^{\mu})^2 = (k^{\mu} - k'^{\mu})^2 = (\sum_i M_i)^2 \equiv M_{tot}^2$

Condition on $\overline{E'_{max}}$

$$E'_{max}$$
 : $[E_{ini} - E'({f k}')]^2 - ({f k} - {f k}')^2 = M_{tot}^2$

This can be solved **analytically**.

▲□▶▲母▶▲臣▶▲臣▶ 臣 のQ@

Kinematics R-functions Cross section

Kinematics: non-relativistic approach

Assuming all hadronic masses are much bigger than their momenta, we can write

Energy momentum conservation - non relativistic

$$E + M_{ini} = \sqrt{\mathbf{k}'^2 + m_{\ell}^2} + \sum_i M_i + \frac{\mathbf{Q}^2}{2M_{tot}} + E_{CM}$$
$$\mathbf{k} = \mathbf{k}' + \sum_i \mathbf{p_i} \qquad \Rightarrow \qquad \mathbf{Q} = \sum_i \mathbf{p_i}$$

Where $\mathbf{Q} = \mathbf{k} - \mathbf{k}'$ and E_{CM} is the hadronic kinetic energy in the hadronic center of mass.

To evaluate E'_{max} we impose $E_{CM} = 0$ and solve it **numerically**.

Kinematics R-functions Cross section

The transition matrix element

The squared matrix element for the transition can be written as

$$|M_{fi}|^2 = |\mathbf{L}_{\alpha}\mathbf{N}^{\alpha}|^2 = L_{\mu\nu}N^{\mu\nu}$$

where, if we do not measure the particles' spin

$$\begin{aligned} L^{\mu\nu} &= 2 \, k'_{\alpha} \, k_{\beta} \, \mathrm{Tr}[(\gamma^{\alpha} \pm m_{\ell}) \, \gamma^{\mu} \, \gamma^{\beta} \, \gamma^{\nu} (1+\gamma^{5})] \\ &= 8 \left(k^{\mu} \, k^{\nu\prime} + k^{\nu} \, k^{\mu\prime} - (k \cdot k') \, g^{\mu\nu} \mp i \, \epsilon^{\alpha\beta\mu\nu} k_{\alpha} k_{\beta}' \right) \end{aligned}$$

and

$$N^{\mu\nu}=\sum_{M_i\,M_f}\,(N^{\mu})^*\,N^{\nu},$$

$$\mathit{N}^{\mu}=\langle\Psi_{\mathit{f}}\:\mathbf{P_{f}}\:\mathit{M}_{\mathit{f}}\,|j^{\mu}_{\mathit{W}}\:|\Psi_{\mathit{i}}\:\mathbf{P_{i}}\:\mathit{M}_{\mathit{i}}
angle$$

Kinematics R-functions Cross section

The 1-body current operator

The $j^{\alpha}(k)$ is the **single nucleon current** has the form

The one body weak current matrix element for the k-th particle

$$j^{\mu}(k) = \bar{u}_{\mathbf{p}'_{k}}^{\lambda'_{k}} \left[F_{1} \gamma^{\mu} + \frac{i}{2M} F_{2} \sigma^{\mu\nu} q_{\nu} + F_{A} \gamma^{\mu} \gamma_{5} + F_{P} \frac{q^{\mu}}{M} \gamma_{5} \right] u_{\mathbf{p}_{k}}^{\lambda_{k}}$$

where the nucleon form factors $F_i(Q^2)$ are prepared separately for the neutron and the proton.

These form-factors are **different** for **CC** and **NC** induced reactions. The **CC** current operator contains also the isospin τ^{\pm} operator.

伺 ト イヨト イヨト

Kinematics R-functions Cross section

R-functions

We define

R-functions

$$R_{ij} = \sum_{M_i,M_f} \int df \,\delta(E_{CM} - E_f) \langle \Psi_f^{(-)} | j_{3N}^i | \Psi \rangle \left(\langle \Psi_f^{(-)} | j_{3N}^j | \Psi \rangle \right)^*$$

There are the so-called R-functions which can be evaluated for inclusive cross section.

Next we decide to work in the reference frame where $Q \parallel \hat{z}$ and we switch to spherical coordinates.

→ < Ξ →</p>

Kinematics R-functions Cross section

The differential cross section

The only **components** that **survive** with these choices are $\Rightarrow R_{PP}, R_{MM}, R_{ZZ}, R_{Z0}$ and R_{00} . The **cross section** can be written as

The differential cross section

$$\frac{d^{3}\sigma}{|E' d^{2}\hat{\Omega}} = \frac{G_{F}^{2}\cos^{2}\theta_{C}}{(2\pi)^{2}} F(Z, E') \frac{k'}{8E} |M_{if}|^{2}$$

This red terms are set to 1 for **NC** reactions.

where now

Transition matrix element

$$|M_{if}|^2 = V_{PP} R_{PP} + V_{MM} R_{MM} + V_{ZZ} R_{ZZ} + V_{Z0} R_{Z0} + V_{00} R_{00}$$

< ロ > < 同 > < 三 > < 三 >

Kinematics R-functions Cross section

CC reactions

As we have seen the cross section contains a function to treat the **Coulomb distortion** of the emerging charged lepton wave function.

The Fermi function

$$F(Z, E') = 2(\gamma + 1) \left[2k'\right]^{2\gamma - 2} \left|\frac{\Gamma(\gamma - iy)}{\Gamma(1 + 2\gamma)}\right|^2$$

where

$$\gamma = \sqrt{1 - Z\alpha} \qquad \qquad y = Z \, \alpha \frac{E'}{k'}$$

(日)

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

The evaluation of the response functions R_{jk}

As we saw, the response functions are defined as

$${\it R}_{jk} = \sum_{m_i,\,m_f} \int df \, \delta(E-E') \, \langle \Psi_f^{(-)} | j^j | \Psi
angle \, \langle \Psi | j^k | \Psi_f^{(-)}
angle$$

These depend **only** on $(Q, E_{CM})!$

 \rightarrow we calculate these quantities on a grid in the (Q, E_{CM}) plane, and then use the grid for any incoming neutrino energy.

Grid properties

- E_{CM} energies up to pion threshold production (~150 MeV)
- need to set kinematics boundaries
- denser grid around the axes origin (wait for more info...)

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

Physical constraints

The allowed physical regions are the ones for which

- $E_{CM} > 0$
- $\bullet \ |\cos \theta'| \leq 1$

The possible maximal region under non-relativistic treatment is the **black** one in the figure, and it contains all subregions for smaller initial energies

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

The grid

The grid used to interpolate the R_{jk} functions

- is denser for small initial energies due to the behavior of these functions
- has different steps for momentum and energy
- is regular in order to use the interpolation method

Alessandro Grassi

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

Numerical approach

 \rightarrow We have to evaluate the R_{jk} functions,

- we need more than 10,000 points on the Q- E_{CM} grid to have convergent results
- the computational cost of the grid depends dramatically on the reaction studied
- a single executable running on one core may take **more than one month** to produce the grid for trinucleon reactions

Is there another way?

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

Parallel network computation

Our group has developed a script to run multiple processes on many machines at the same time.

The system

- has a **central daemon** on the main running machine which **controls and sends** the inputs for the jobs to be done
- each job produces only the values of the R_{jk} functions for a given Q- E_{CM} configuration (input) and can be run on any machine
- all the **results** (output) from the jobs are checked by the daemon and stored **on the main machine**
- the theoretical number of the parallel jobs if all the machines are working on the same code is simply the number of cores per machine summed for all the machines

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

A simple diagram

(*Q*, *E_{CM}*) grid Physical constraints Numerical approach

Pratical example

Imagine our grid consists in 1000 points, and each points takes approximately 2 hours.

For one single executable (1 core) it would take

time = 2000 hours \sim 83 d

Now imagine we have 4 machines which can work with 6 cores each and have approximately the same calculation speed

#parallel jobs = $6 \times 4 = 24$ time = $83/24 \sim 3 \text{ d } 11 \text{ h}$

Reaction on ²H Reactions of ³H and ³He

Comparison of the two methods for $\nu_e + {}^2\mathrm{H} \rightarrow \nu_e + p + n$

E(MeV)	$d\sigma_{PWD}$	$d\sigma_{PWT}$	% err	$d\sigma_{RD}$	$d\sigma_{RT}$	% err
10	0.543	0.536	1.365	1.09	1.08	0.864
20	4.67	4.64	0.614	6.84	6.79	0.664
30	14.	13.9	0.373	18.	17.9	0.54
40	29.2	29.1	0.257	34.8	34.6	0.422
50	50.5	50.4	0.199	57.5	57.3	0.252
60	78.1	78.	0.136	86.1	86.	0.12
70	112.	112.	0.074	121.	121.	0.065
80	152.	152.	0.08	161.	161.	0.04
90	197.	197.	0.055	206.	206.	0.032
100	248.	247.	0.055	257.	257.	0.057
110	303.	303.	0.009	311.	312.	0.123
120	362.	362.	0.05	370.	370.	0.12
130	424.	424.	0.023	432.	432.	0.151
140	489.	489.	0.014	496.	497.	0.145
150	557.	557.	0.024	563.	564.	0.12

Reaction on ${}^{2}H$ Reactions of ${}^{3}H$ and ${}^{3}He$

注入 注

Comparison graph

Reaction on ${}^{2}H$ Reactions of ${}^{3}H$ and ${}^{3}He$

Results for break-up processes on ³H and ³He

For these reactions

- \simeq 2000 points on (Q, E_{CM}) grid
- 4 reactions evaluated \Rightarrow 4 grids
- NC reactions have been studied both for neutrino and antineutrino, while for the CC reactions we restricted ourselves to the antineutrino case

Reaction on ²H Reactions of ³H and ³He

R-functions for $\bar{\nu}_e$ CC breakup on ³He

Cross section for breakup reactions on ³He

Figure: Cross section for three inclusive (anti)neutrino reactions with 3 He: CC electron antineutrino disintegration of 3 He (dashed line), NC electron antineutrino disintegration of 3 He (solid line), NC electron neutrino disintegration of 3 He (dotted line).

Cross section for breakup reactions on ³H

Figure: Cross section for three inclusive (anti)neutrino reactions with ³H: CC electron antineutrino disintegration of ³H (dashed line), NC electron antineutrino disintegration of ³H (solid line), NC electron neutrino disintegration of ³H (dotted line).

Conclusions

- We have calculated the **response function** and the **cross section** for the breakup processes on ²H, ³H and ³He.
- the response function method is **economical** in terms of computation time and allows us to study both ν and $\bar{\nu}$ processes for neutral current reactions **without substantial costs**
- the **agreement** of this method with the traditional integration one is **very good**, it depends on the grid density

Future improvements

This work is a part of the LENPIC project and

- aims at calculations with heavier nuclei
- we plan to **improve it** using different **potentials** and the corresponding consistent **current operators**

Thank you!

Alessandro Grassi