THE $D_{03}(2380)$ DIBARYON RESONANCE EXCITATION IN pd COLLISION IN THE GEV REGION

N.T. Tursunbayev^{1,2,3} Yu.N. Uzikov^{1,2,4}

¹ Joint Institute for Nuclear Researches, Dubna, Russia

²Dubna State University, Dubna, Russia

³Institute of Nuclear Physics, Almaty, Kazakhstan

⁴Department of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

The 24th European Conference on Few-Body Problems in Physics, 2-6 September 2019

MOTIVATION

DIBARYON DETECTION AND ABC EFFECT

ANKE@COSY DATA

TWO RESONANCE MODEL

NUMERICAL RESULTS

SUMMARY

TURSUNBAYEV, UZIKOV (JINR)

イロト イポト イヨト イヨト

MOTIVATION

Search for dibaryon resonances in two-nucleon systems has a long history (*H. Clement, Prog. Part. Nucl. Phys. 93, 195 (2017)*). At present as one of the most realistic candidate to dibaryon is considered the resonance $D_{IJ} = D_{03}$ observed by WASA@COSY in the total cross section of the reaction of two-pion production (*P. Adlarson et al., Phys. Rev. Lett. 106, 242302 (2011)*)

$$M_{D_{02}} = 2.38 \text{ GeV } \Gamma_{D_{02}} = 70 \text{ MeV } I = 0 \text{ J} = 3 \text{ J}^P = 0^+$$

H. Clement / Progress in Particle and Nuclear Physics 93 (2017) 195-242

(i) 6q-models, – Y.-B. Dong, et al. (2016) (hidden colour);
(ii) hadron picture, πNΔ system – A.Gal, H.Garcilazo, PRL 111 (2013) 172301;
ΔΔ system – J. Niskanen, PRC 95 (2017) 054002 A. Gal PLB 769 (2017) 436

04.09.2019

*d**(2380) hexaquark: from Photoproduction to Neutron Stars - **Dr Mikhail Bashkanov** (University of York)

Dibaryon resonances and NN interaction - **Dr Olga Rubtsova** (Skobeltsyn Institute of Nuclear Physics, Moscow State University)

M. Bashkanov et al. / Nuclear Physics A 958 (2017) 129-146

The enhancement took place near the threshold of the spectrum, $M_{\pi\pi} \sim 300 \text{ MeV}/c^2$, with a surprisingly small width of about 40 MeV/ c^2 . This phenomenon got the name of the Abashian-Booth-Crowe (ABC) effect (1961).

PLATONOVA AND KUKULINS MODEL

The contribution of the σ -production mechanism is shown by dashed lines while the contribution of the mechanism going through the intermediate dibaryon D_{12} is shown by dash-dotted lines. The solid lines correspond to the summed cross sections.

$pd \rightarrow pd\pi\pi$ reaction. ANKE@COSY data

The experiment was performed at the proton beam energies $T_p = 0.8$, 1.1, 1.4, and 1.97 GeV with the spectrometer ANKE installed at the storage ring of the synchrotron COSY. V.Komarov et al.(for ANKE collab.) EPJ. A (2018) 54: 206

$pd \rightarrow pd\pi\pi$ reaction. ANKE@COSY data

 $p + d \rightarrow p + D_{03} \rightarrow p + D_{12} + \pi_1 \rightarrow pd + \pi_1 + \pi_2$

$$d\sigma = \frac{(2\pi)^4}{4l} \int \overline{|M_f|^2} \delta^{(4)}(P_i - P_f) \frac{d^3 p_1}{(2\pi)^3 2E_1} \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{d^3 p_3}{(2\pi)^3 2E_3} \frac{d^3 p_4}{(2\pi)^3 2E_4}$$
(1)

$$M_{\lambda_{\rho}\lambda_{d}}^{\lambda_{\rho}'\lambda_{d}'}(\rho d \rightarrow \rho d\pi\pi) = M_{\lambda_{\rho}}^{\lambda_{\rho}'}(\rho \rightarrow \rho'\sigma) \frac{1}{\rho_{\sigma}^{2} - m_{\sigma}^{2} + im_{\sigma}\Gamma_{\sigma}} M_{\lambda_{d}}^{\lambda_{d}'}(\sigma d \rightarrow d\pi\pi)$$
(2)

$$\begin{split} \mathcal{M}_{\lambda_{d}}^{\lambda_{d}'}(\sigma d \to d\pi\pi) &= \sum_{\lambda_{2},\lambda_{3},\mu,m_{1},m_{2}} \frac{F_{D_{03} \to d\sigma}(q)F_{D_{03} \to D_{12}\pi_{1}(k_{1})}}{P_{D_{03}}^{2} - M_{D_{03}}^{2} + iM_{D_{03}}\Gamma_{D_{03}}} \frac{F_{D_{12} \to d\pi_{2}(\lambda_{1})}}{P_{D_{12}}^{2} - M_{D_{12}}^{2} + iM_{D_{12}}\Gamma_{D_{12}}} \\ &\times (1\lambda_{d}L\mu|3\lambda_{3})\mathcal{Y}_{L\mu}(\hat{\mathbf{q}})(2\lambda_{2}l_{1}m_{1}|3\lambda_{3})\mathcal{Y}_{l_{1}m_{1}}(\hat{\mathbf{k}}_{1})(1\lambda_{d}'l_{2}m_{2}|2\lambda_{2})\mathcal{Y}_{l_{2}m_{2}}(\hat{\lambda}_{1}) + \\ & \frac{F_{D_{03} \to d\sigma}(q)F_{D_{03} \to D_{12}\pi_{2}(k_{2})}{P_{D_{03}}^{2} - M_{D_{03}}^{2} + iM_{D_{03}}\Gamma_{D_{03}}} \frac{F_{D_{12} \to d\pi_{1}}(\lambda_{2})}{P_{D_{12}}^{2} - M_{D_{12}}^{2} + iM_{D_{12}}\Gamma_{D_{12}}} \\ &\times (1\lambda_{d}L\mu|3\lambda_{3})\mathcal{Y}_{L\mu}(\hat{\mathbf{q}})(2\lambda_{2}l_{1}m_{1}|3\lambda_{3})\mathcal{Y}_{l_{1}m_{1}}(\hat{\mathbf{k}}_{2})(1\lambda_{d}'l_{2}m_{2}|2\lambda_{2})\mathcal{Y}_{l_{2}m_{2}}(\hat{\lambda}_{2}) \quad (3) \end{split}$$

The vertex factors *F* in eq. (3) are defined as in Platonova, M.N., Kukulin, V.I.: Phys. Rev. C 87, 025202 (2013).

$$F_{R\to ab}(q) = M_{ab}(q) \sqrt{\frac{8\pi\Gamma_{R\to ab}^{(l)}(q_{ab})}{q_{ab}^{2l+1}}}$$

$$\Gamma_{R\to ab}^{(l)}(q_{ab}) = \Gamma_{R\to ab}^{(l)} \left(\frac{q_{ab}}{q_0}\right)^{2l+1} \left(\frac{q_0^2 + \lambda_{ab}^2}{q_{ab}^2 + \lambda_{ab}}\right)^{l+1}$$

$$M_{D_{03}} = 2.38 \text{ GeV } \Gamma_{D_{03}} = 70 \text{ MeV} \qquad M_{D_{12}} = 2.15 \text{ GeV } \Gamma_{D_{12}} = 110 \text{ MeV}$$

$$M_{\sigma} = 0.55 \text{ GeV } \Gamma_{\sigma} = 0.5 \text{ GeV } f_{\sigma} = 2.2 \quad \Gamma_{D_{03}\to d\sigma}^{(l)} = 8.5 \text{ MeV}$$

$$\Gamma_{D_{03}\to D_{12}\pi}^{(l_1)} = 6.5 \text{ MeV} \quad \Gamma_{D_{12}\to d\pi}^{(l_2)} = 10 \text{ MeV}$$

$$k_{10} = 0.177 \text{ GeV } \lambda_{D_{12}\pi} = 0.12 \text{ GeV}$$

$$\lambda_{10} = 0.224 \text{ GeV } \lambda_{d\pi} = 0.25 \text{ GeV}$$

$$q_0 = 0.362 \text{ GeV } \lambda_{d\sigma} = 0.18 \text{ GeV}$$

$$(4)$$

(Platonova-Kukulin, NPA 946, 117(2016))

$pd \rightarrow pd\pi\pi$ reaction. ANKE@COSY data and two-resonance model

$pd \rightarrow pd\pi\pi$ reaction. $M_{\pi\pi}$ spectra at $I_p = 1.1 \text{GeV}$.

All curves normalized to the experiment!!!

squared dashes-V.Komarov et al.(for ANKE collab.) EPJ. A (2018) 54: 206 full lines – two-resonance model.

Yu.Uzikov, N. Tursunbayev, Springer Proceedings in Physics, (2019)

 $0^{\circ} < \theta_{d}^{cms} < 11^{\circ} M_{D03} = 2.357 - 2.38 \text{ GeV} T_{p} = 1.1 \text{ GeV}$

500

NUMERICAL RESULTS

 $\Gamma_{D_{co} \rightarrow d\pi\pi}^{exp} = 10 \text{ MeV}$ (M. Baskanov, H. Clement, T. Skorodko, Eur. Phys. J. A 51, 87 (2015)). If we assume that this width is completely determined by the decay $D_{03} \rightarrow D_{12}\pi \rightarrow d\pi\pi$, which is the basis of the model in question, then in order to get agreement with data in absolute value we should put $\Gamma_{D_{n_3} \rightarrow d\sigma} = 8.5 \text{ MeV}$ and $\Gamma_{D_{n_3} \rightarrow \pi^0 NN} = 15 \text{ MeV}$. at $l_1 = 1, l_2 = 1$ $\Gamma_{D_{n_3} \to d\pi\pi}^{theor} = 0.468 \text{ MeV}$ at $l_1 = 1, l_2 = 3 \Gamma_{D_{03} \to d\pi\pi}^{\bar{h}eor} = 0.146 \text{ MeV}$ at $l_1 = 3, l_2 = 1$ $\Gamma_{D_{03} \to d\pi\pi}^{\text{theor}} = 0.131 \text{ MeV}$ at $l_1 = 3, l_2 = 3$ $\Gamma_{D_{03} \to d\pi\pi}^{\text{theor}} = 0.043 \text{ MeV}$ at $l_1 = 5, l_2 = 1$ $\Gamma_{D_{03} \rightarrow d\pi\pi}^{\text{theor}} = 0.32 \text{ MeV}$ at $l_1 = 5, l_2 = 3 \ \Gamma^{theor}_{D_{\Omega 3} \rightarrow d\pi\pi} = 0.26 \ MeV.$ In order to get this results, we use next parameters: $\Gamma_{D_{03} \rightarrow D_{12}\pi} = 6.5 \text{ MeV}$ and $\Gamma_{D_{12} \rightarrow d\pi} = 10 \text{ MeV}$ (M.N. Platonova, V.I. Kukulin. NPA 946 (2016)) Also using two resonance model we calculated partial width of decay $\Gamma_{D_{03} \rightarrow \pi^0 NN}$ at three combinations of orbital momentum of relative motion D_{12} and π^0 $\begin{array}{l} \text{at } l_{1} = 1 \ \Gamma_{D_{03} \to \pi^{0} NN}^{\text{theor}} = 0.433 \ \text{MeV} \\ \text{at } l_{1} = 3 \ \Gamma_{D_{03} \to \pi^{0} NN}^{\text{theor}} = 0.5 \ \text{MeV} \\ \text{at } l_{1} = 5 \ \Gamma_{D_{03} \to \pi^{0} NN}^{\text{theor}} = 0.625 \ \text{MeV} \end{array}$ $D_{D_{3} \rightarrow \pi^{0} NN} = 6.3 \text{ MeV}$ (WASA@COSY Collaborations, PLB774 (2017), Upper limit to Γ^{exp} 599-607))

- * The model calculations using the mechanism of the coherent pion pair production in the $pd \rightarrow pd\pi\pi$ reaction with the *t*-channel σ -meson exchange and two dibaryon resonances D_{03} and D_{12} qualitatively reproduce the experimentally obtained mass distribution dependence of the differential cross section of the final $d\pi\pi$ system and also $\pi\pi$ system.
- * Since the orbital momenta L, l_1, l_2 in vertices are not known, we considered all possible combinations of these momenta separately. On this way we found that for lowest momenta the observed in the reaction $pd \rightarrow pd\pi\pi$ enhancement at low M_{pipi} is not related to the true ABC effect, but rather to specific kinematic conditions of ANKE experiment (almost collinear kinematics) and this enhancement disappears for the full interval of the deuteron scattering angles.
- * For higher orbital momenta ($L = 2, l_1 = 1, l_2 = 3, L = 4, l_1 = 1, l_2 = 3$) the enhancement effect in $M_{\pi\pi}$ distribution takes the place even for full interval of the deuteron scatterig angles $\theta = 0 \pi$.
- * The model allows one to reproduce the shape of the distributions $M_{d\pi\pi}$ and for certain orbital momentum $M_{\pi\pi}$. However, the question of the absolute value of the calculated cross section remains open. Other mechanisms need to be researched.

・ロン ・四 ・ ・ ヨン

Thank you for your attention!