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1 Introductory remarks

We have extended our previous applications of the method of unitary clothing trans-
formations (UCTs) in mesodynamics [1, 2] to quantum electrodynamics (QED)
[3, 4]. Starting from the primary canonical interaction between electromagnetic and
electron-positron fields, the QED Hamiltonian has been expressed through a new
family of the Hermitian and energy independent interaction operators built up in the
e?-order for the clothed electrons and positrons. In this context, we show the QED
Hamiltonian Hgeq(a) = HE(a) + Veq(a) in the bare particle representation (see,
e.g., the monograph [5]), where V4 is given by

Vied = f dxji(x)a*(x) + Vcou = VI + Vo, (1)

with the electron-positron current density operator

ju(x) = e ()Y P (x) (2)
and the Coulomb part
07 0
Voul = ! J dxf dyj () (Y)e_”’“y' - (3)
2 4m|x — y|
In the CPR
Hgea(a) = He(a) + Vied(a) = K(ac) = Ke(ac) + Kr(ac). (4)

Admittedly the exponential factor Is introduced to deal with infrared divergences with
the parameter A > 0O set to zero at the end of all calculations. Here o, denotes
the set of all creation and destruction operators for the clothed particles included.
Note also that we use the Coulomb gauge (CG), where the photon field a,, being
transverse, has two independent polarizations.

It is proved, that in the @?-order the interaction part Ki(ac) is approximated by

2
KI( )(O{c) = Ke—e——e—e— T Ketet setet + Kete——ete— + Ke+e——>yy+
+K'Y'Y_>e+e_ + Ke_'y_>e—'y + Ke+'y_>e+'y,

(5)

where the separate contributions in the r.h.s are responsible for the different physical
processes In this system of interacting photons and leptons.

2 Analytical expressions

A distinctive feature of our approach is that all expressions in the r.h.s of (5) are
obtained simultaneously with mass and vertex renormalizations from the commu-
tator of V from (1) with the generator of the first unitary clothing operator [1].
In particular, we present the interaction operator between clothed electrons and
positrons

dp’ dp’ dp, dp;
Ke—e+—e—et = /0 70 0 0
Py Py Py P;

Ve-e+ (P71, P5: P1, P2) X

x b'(p7)d"(p3)b(p1)d(p2),

(6)

with

Ve—e+(p/1, P;;Pl, p2) = 5(p’2 +p1—p2—p1)x

(2m)° (7)
X [us(p’l, P5: P1, P2) + Ualpy, Py P1, pz)],

where m the physical electron (positron) mass, b(d) is the destruction operator for
the clothed electron (positron). Henceforth, we omit polarization indices where it
does not lead to confusion. In addition, we have introduced the decomposition into
the so-called scattering and annihilation contributions Us and u,s. Each of them

has the structure
Feynman-like off-energy-shell
s g, ' (8)

1 1 1

_{ / 2+ / 2
2(p]—p1)° (P,—p2)
(p] + P, —P1—Pp2)

Us/a=U

Ugeynman—like — _a(pgl)'yuu(pl) }U(pz)'Y“U(plz),

eyl = (P —pry T A a(p?)y u(p1)x
g %{((Pp’ll—_ lfll))2 " ((1922__522))2 }ﬁ(pz)you(p’z),
U, mae = a(p’l)v“u(p;);{(pl +1 52 T o+ P, )2}17(/02)%“(#?1)'
yorencroy-shell — (p(/lpz ilzp_,z)ilJr_;Z)a(p’l)'yOU(p;)><
1 (p]+p%) + _
* 5{ (P'11+ p12)2 - ((lf11+ :3922))2 }U(pz)"you(pl).

Such a decomposition implies that only the Feynman-like part survives on the energy
shell, i.e., on the condition p’lo + p’20 = p(l) + pg. Of course, all momenta included
are defined on the mass-shell: p? = pg — p? =m->.

Furthermore, we present the operator of the process of the annihilation of clothed
electron and positron to two photons

dk]_dkzdpldpz
Ke—e+—>yy — f Ve—e+yy(k2, Ki; P2, pl)x
k} k3 P} P3 (9)

x c'(k2)c'(k1)b(p2)d(p1),

where cT is the creation operator for the clothed photon. Similarly to (8), we sep-
arate off-energy-shell part which goes to zero if energy conservation law satisfied.

e?m
2(2m)3

6(p1+ pr— ki1—k3)x

X [UFeynman + Uoff—energy—shell]’

Ve—e‘l"y'y(kZ; kl;er pl) — (10)

U(p1)é€(k1)é(k2)u(p2)

P1— K1+ m
_l[ﬁ(Pl)Q‘(kl)&‘(kz)U(Pz) N ﬂ(Pl)Q‘(kz)e‘(kl)U(PZ)]
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3 Correction to the positronium ground state energy

The problem of describing the bound states in QED in case of the positronium
(Ps) has been considered by using the new interaction (6). Positronium consisting
of an electron and a positron iIs the simplest bound system in QED. Its ground
state (g.s.) has two possible configurations with total spin values S=0, 1. The sin-
glet (triplet) lowest-energy state with S=0 (S=1) is known as the para-positronium
(ortho-positronium). For this exposition, we will restrict ourselves to the consider-
ation of the para-positronium (p-Ps) system.

As noted in [6], the Fock subspace of all the clothed states can be divided into sev-
eral sectors (two electrons sector, photon-electron sector, etc.) such that K (2)(O{C)
leaves each of them to be invariant, i.e., for any state vector |®) of such sector
K@) (a.)|®) belongs to the same sector. Here we make an assumption that the
Ps state belongs only to electron-positron sector. The corresponding g.s., being the
H eigenvector, viz.,

H|p-Ps(P)) = E|p-Ps(P)), (11)

can be represented as

dp.,dp
IP;p—Ps)=J =~ Uoo(P; py, P,)b'(p1)d (p2)IQ).  (12)

1 P

In the p-Ps rest system or center mass system (c.m.s.) the eigenvalue equation has
the form

/

V(p’, P)¥oo(p") = M, pWoo(P), (13)

2poWoo(p) + f p
PoP,,

where My, ps = Me-+ Me+ + €,.ps the para-positronium mass and &, ps Its binding
energy, Woo(p) = Woo(P = 0; p, —p) (since we work in c.m.s.) and V(p’, p)
gets out from (6) inc.m.s. (P=p;=—p,. P’ = p’1 = —p’z)

V(p}, P}y p1, p2) = (QId(P})b(P;)Ke-er~eerb (P1)A'(P2)IQ).  (14)

In the non-relativistic limit (pg = p6 = m) the eigenvalue equation reduces to
the ordinary Schrodinger equation for the Coulomb potential in momentum space.
Therefore we come to the well-known Coulomb problem with the g.s. energy
£45. & —6.8eV. By considering the difference between V' (p’, p) and the Coulomb
potential as a perturbation (it is not evident) and using the non-perturbative wave
function of the ground state

2 2a3

Woo(p) = (1 a2p?)?’ (15)

from Appendix C in [7] we have computed the energy shift
Ae=—4.7325-10""* eV.

This value surprisingly coincides with those estimations given in [7] (see formula
(1.1) therein). In order to verify such a coincidence beyond the perturbation theory,
we are addressing the partial wave decomposition of the positronium eigenvectors
that has been successful when finding the U and w components of the deuteron
wave function (WF) [8].

4 The partial eigenvalue equation for para-positronium

In this context, we derive the partial eigenvalue equation for the para-positronium
WFs that belong to the total angular momentum J, viz.,

00 ;72 /

2p0W(p) + J P WV, 0y = meep). (1)

0o PoPy

Here \7/(p, p’) is the partial electron-positron quasipotential derived in the mo-
mentum representation from the new e~e*-interaction operator. In turn, we have

VI(p, p’) = ¥ (Feynman-like) + T (off-energy-shell). (17)

Such a separation implies that only the Feynman-like part survives on the energy
shell, where pf = VP2 +m?2 = po = 4/p2+ m2. The task of solving the
eigenvalue equation and obtaining the corresponding positronium states in the CPR
is underway (see Appendix C in [9]).

5 Decay rates for Ps— Yy

The positronium decay to two photons has considered. The corresponding decay
rate is given by (see formula (9.337) in [10])

dk dk
= Z o1 o2
oo Ky K5

né(k) + k) — Ep)é(ky + k2 — P)|Tq|*,  (18)

where the T-matrix element Tr; = (Q|c(k101)c(k202)T|Ps) from the initial Ps
ground state to the final state of the two photons respectively with the momenta
k1 = (kY k1) and k, = (kg, k>) and their polarizations 01, 0>. In this connec-
tion, we note an equivalence theorem proved in [11], that allows us to use a recipe
for calculating the S-matrix (T-matrix) in the CPR.

In the rest frame of positronium (P = 0) one can do integration with both é-

functions -
[[=—
>3

0102

fdi(lleilzr (19)

where IA(1 Is unit vector along vector k1. Due to é-functions in this expression
should be done the replacements: k = k71 = —Kk> and kg = %Eps.
The positronium state-vector with spin S can be presented in the representation of

total spin as
Ps(S)) = r d_ngMs(p)lp SMs), (20)
MsJ P
where [pSMs) = > (5H13M2ISMs)bt(p_p2)d (pu1)IQ) the electron-
positron state-vector iﬁlﬁétal spin representation and p_— = (pg, —p). In Born

approximation we suppose T & Kg—g+_yy. Thus our formula for para-positronium
decay in Born approximation is

Tt

0102

J di(|(kalalee—e+—>yy|p‘P5)|2r
(21)

ap
(kalolee—e+—>yy|p‘P5) =Jp_wOO(p)(k0102|Ke—e+—>yy|pOO)r
0

where (ko10>| = (Q|c(ko1)c(k_0>). Here we use g.s. Coulomb wave function
as an approximation of positronium g.s. wave function.
The interaction in an arbitrary frame from (9) has the form

am

(Q|C(klal)C(kzaz)Ke—e+—>wa(P2H2)dT(Plul)|Q) = 4_1_[20e—e+wr (22)

1 1
Ue—etyy = ﬁ(pl,ul)é(klal)g{ﬁz A
1

— }e‘(kzaz)U(lelz)+ (k1, 01 <= k2, 032),
P1— K1+ m

where (k1, 01 < k2, 02) means the same expression but with the replacements.
It can be noted that in the static limit (p; , = 0) we get the well known Pirenne-

Wheeler result ' = %O{Sm ~ 8.0325-10% sec™! [12, 13].
After going to c.m.s. and performing the summation over fermions polarizations

(M1, 42) we get

(23)

amaz dp 1
ko107|Ke—e+—vyv|p-Ps) = i X
x ej(koi)ej(k_o2)[W;(p, k) + W;(p, —k)],
1 { pjpPkki PPk . (24)
Kl ikl
poko—pk U (po+mIm 7 (po + m)m

(B0 S )

Wi(p, k) =

where p = p1 = —p>, K = ky; = —ky and indices (, J, K, [ =1, 2, 3. Here we
use Coulomb gauge thus polarization vectors satisfy the properties: eg(ko) = O,
and ke(ko) = 0. Then after the summation over photons polarizations (01, 02)

we obtain
- 128m

—I°. (25)
aTt

An interesting fact is that the dependence on the module of the photon momentum
has completely disappeared, 1.e., our rate will be independent on positronium binding
energy. The integral | in (25)

o0

_Jdp P 1 In\/102+1+/o
) (1+502)%/p2+1 +/p2+1—0p

has no singularities and can be calculated numerically with any precision. |t means
that the decay rate of para-positronium into two photons

[=7.9411-10%sec . (27)

~ 7.5865-10"% (26)

Recall that the experimental result for this value [14] is: 7.9909 + 0.0017 -
10° sec=t. Of interest is to what extend the estimation (27) can be changed with
the off-shell interaction included. It has turned out that the off-energy-shell part
on the r.h.s. of (10) does not contribute to the decay rate. Probably it is due to
the fact that in our approximation the p-Ps wave function (15) is independent of
fermion polarizations.

Conclusions

We have shown that the UCT method can be successfully applied to the treatment
of the bound states in QED. Our consideration gives one more application of a
well-forgotten concept on the clothed particles in quantum field theory, put forward
by Greenberg and Schweber [15]. We have seen that our approach leads to new her-
mitian and energy independent interactions between clothed particles including the
off-energy-shell and recoil effects (the latter in all orders of the V2/c? - expansion).
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