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Influence of the Pauli principle 
on two-cluster potential energy 



This presentation studies effects of the antisymmetrization  
on potential energy of two interacting  nuclear clusters 
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1. Potential energy matrix 

2.  Eigenvalues of potential energy 
operator: folding vs exact potential 

3.  Eigenfunctions of potential energy                 
operator : folding vs exact potential 



We analyse two-cluster potential energy for the lightest 
nuclei of p-shell with a pronounced two-cluster structure 
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We explore a microscopic two-cluster model of light nuclei 

W.f. of relative motion Antisymmetrization  
operator 

Intrinsic cluster w.f. 

A set of linear equations is solved to find expansion coefficients CmL: 

Eigenvalues of the norm kernel 4/35 

Cluster oscillator functions 

Algebraic version of Resonating Group Method:  

number of quanta 



Inter-cluster wave function in r- and p-space can be expanded 
into a set of h.o. functions with the same coefficients  
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Neglecting Pauli principle gives folding approximation 
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solution of the two-body Schrödinger equation 

single particle local densities of the clusters 

with folding potential 



The idea is to compare the exact and folding two-cluster 
potentials via separable representation of the potentials 
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Exact two-cluster potential is a nonlocal operator 



The potential energy matrix of dimension NxN 
approximates the exact potential as follows:  
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Potential energy matrix can be reduced to a diagonal form  
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Orthogonal matrix 

Eigenvectors of the potential energy matrix define new eigenfunctions 



Oscillator basis realizes specific form of separable potentials 
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 The eigenvalues λα coincide with potential energy V(r) at 
some discrete points rα 

λα=V(rα) 



Eigenvalues perfectly coincide with the original potential 
energy in discrete points for oscillator length b=rpot/2 
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Eigenfunctions of the folding potential operator are universal 
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 Eigenfunctions of the folding potential energy operator in 
the momentum representation are Bessel functions 

 Eigenfunctions of the folding potential energy operator in 
discrete representation are harmonic oscillator functions 
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Eigenfunctions Uα
N of folding potentials in discrete 

representation are harmonic oscillator functions Φn(rα
N,b) 
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Eigenfunctions ϕα(p)  of the folding potential operator in the 
momentum representation are Bessel functions j0(prα) 

Gaussian potential, b=rpot 
Yukawa potential , b=rpot 



Eigenvalues of the potential energy operator reproduce  
the behavior of the potential in some discrete points  

A limited number of eigenstates of a short-range potential  
energy matrix gives nonzero contribution to the S-matrix   
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2.  Eigenvalues of potential energy 
operator: folding vs exact potential 

the number of basis functions 



(MP) 

(VP) 

(MHNP) 
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We employ three nucleon-nucleon potentials (+Coulomb) 
which have been often used in cluster models 

300 



The larger is the core in the nucleon-nucleon potential,  
the deeper is its attractive part 
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Attractive part of the even components  
of the potentials 

Even components of the potentials as a 
function of distance between nucleons 



Despite of the huge core in MHNP nucleon-nucleon potential, 
there is no such a core in cluster-cluster folding potential 
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Folding potentials generated by the VP 
Folding potentials generated by the MHNP 



Eigenvalues of the exact and folding potential energy matrix 
are quite close to each other  
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eigenvalue number α 

resonances 



Dependence of eigenvalues of the exact potential on the 
number of functions exhibits resonance behavior 
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resonances 

the number of basis functions 



Contrary, none of the eigenstates of the folding potential 
has a resonance behavior 
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the number of basis functions 
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3.  Eigenfunctions of potential energy  operator : 
folding vs exact potential 

the number of quanta n 
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The eigenfunctions of the exact potential corresponding to 
non-resonance values of 𝜶 is suppressed at the range n<50 

7Be 8Be 

the number of quanta n the number of quanta n 
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Eigenfunctions of folding potential has a maximum at lower 
number of quanta n than eigenfunctions of exact potential 

the number of quanta n 
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Non-resonance eigenfunctions of the exact potential in  
p-representation are suppressed in the range p<10 fm-1 
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Eigenfunctions of resonance states of the exact potential  
are localized at low values of oscillator quanta n<10 

the number of quanta n 
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Eigenfunctions of resonance states of the exact potential  
in p-representation are localized at low values of p 
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The eigenvalues of the exact Volkov N2 potential differ from 
those of the folding potential at a single point α=1 

“trapped” state 

eigenvalue number α 
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Dependence of eigenvalues of the exact Volkov N2 potential 
on the number of basis functions shows the existence of a 
“trapped” state at α=1 

exact folding 

“trapped” state 
the number of basis functions the number of basis functions 
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Eigenfunction of a “trapped” state in Volkov N2 potential  
is similar to the resonances in Hasegawa-Nagata potential 

the number of quanta n 
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A “trapped” state in Volkov N2 potential appears only for 
the cluster configurations characterized by eigenvalues of 
the norm kernel Λn>1 

Eigenvalues of the norm kernel for lightest p-shell nuclei 

the number of quanta n the number of quanta n 
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With increasing momentum eigenfunctions of a “trapped” 
state in p-representation decrease exponentially 

Momentum representation Coordinate representation 

Exponential tail 
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All other eigenfunctions of exact Volkov potential are quite 
close to those of the folding potential 

the number of quanta n 



Diagonalization of the potential energy matrix proposes  
a self-consistent way of reducing a nonlocal potential  of 
two-cluster systems to the local form 
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1. Dependence of eigenvalues of the 
exact potential on the number of 
functions exhibits resonance behavior 

2. Eigenfunctions of the exact potential 
essentially differ from those of folding 
potential 



Slides for answering questions 
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The smaller is the eigenvalue number α, the more  
the corresponding eigenfunction Uα(r) resembles δ-function 

Gaussian potential, b=rpot 
Yukawa potential , b=rpot 



Discrete coordinates rα define the location of the α-th zero 
of the eigenfunction in harmonic oscillator representation 
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They are the zeros of the Laguerre polynomial   

For ρ= 


