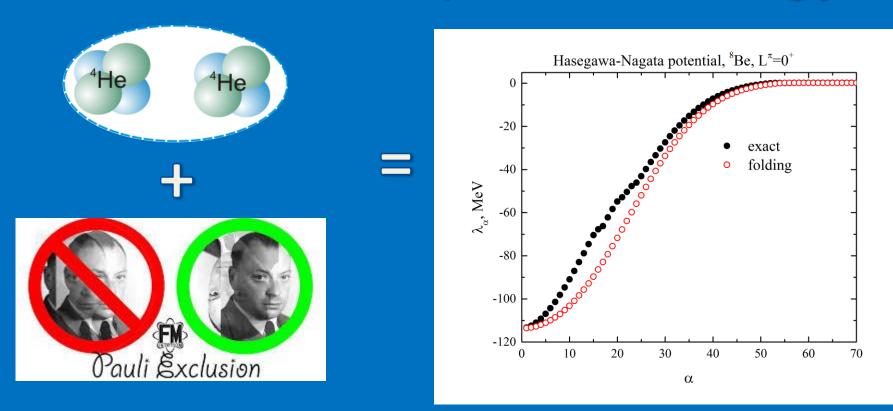
# Influence of the Pauli principle on two-cluster potential energy



Yuliya Lashko, Viktor Vasilevsky and Gennady Filippov

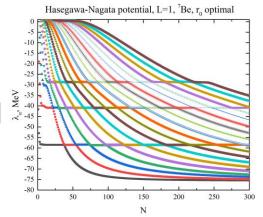
Bogolyubov Institute for Theoretical Physics Kyiv, Ukraine



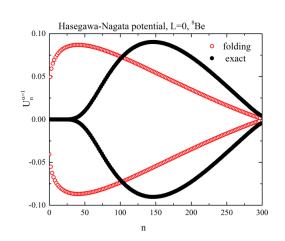
### This presentation studies effects of the antisymmetrization on potential energy of two interacting nuclear clusters

1. Potential energy matrix 
$$\widehat{V}_{N}\left(r,\widetilde{r}\right) = \sum_{n,m=0}^{N-1} \Phi_{nL}\left(r,b\right) \left\langle n\left|\widehat{V}\right|m\right\rangle \Phi_{mL}\left(\widetilde{r},b\right)$$

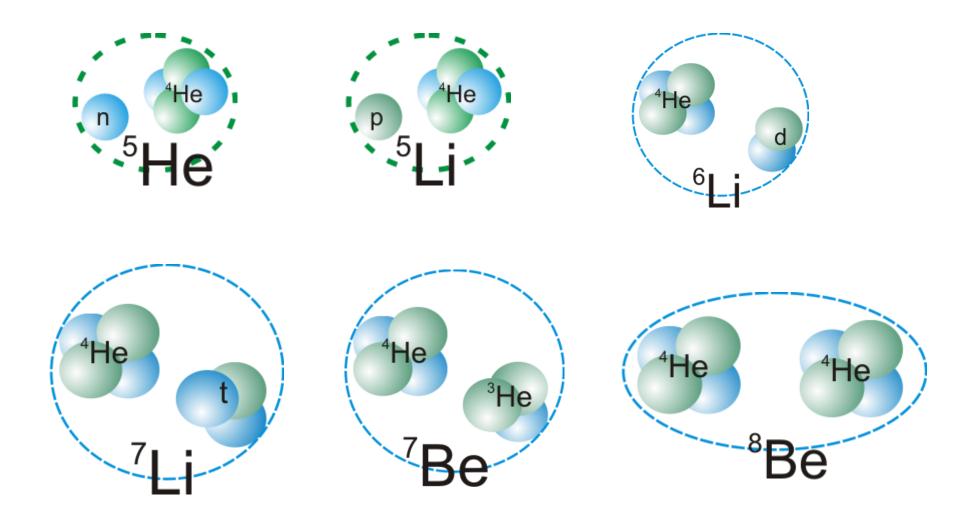
2. Eigenvalues of potential energy operator: folding vs exact potential



3. Eigenfunctions of potential energy operator: folding vs exact potential



#### We analyse two-cluster potential energy for the lightest nuclei of p-shell with a pronounced two-cluster structure



#### We explore a microscopic two-cluster model of light nuclei

Intrinsic cluster w.f.

$$\Psi_{LM} = \widehat{\mathcal{A}} \left\{ \left[ \psi_1 \left( A_1, s_1, b \right) \psi_2 \left( A_2, s_2, b \right) \right]_S f_L \left( q \right) Y_{LM} \left( \widehat{\mathbf{q}} \right) \right\}$$

Antisymmetrization operator

W.f. of relative motion

number of quanta

Algebraic version of Resonating Group Method:  $\Psi_{LM} = \sum_{n=0}^{\infty} C_{nL} \ket{n,L,M}_A$ 

Cluster oscillator functions  $|n, L, M\rangle_A = \widehat{\mathcal{A}} \{ \psi_1(A_1) \psi_2(A_2) \Phi_{nL}(q, b) Y_{LM}(\widehat{\mathbf{q}}) \}$ 

A set of linear equations is solved to find expansion coefficients  $\mathbf{C}_{\mathbf{mL}}$ :

$$\sum_{m=0}^{\infty} \left\{ \left\langle n, L \left| \widehat{H} \right| m, L \right\rangle_A - E \cdot \Lambda_m \delta_{n,m} \right\} C_{mL} = 0$$

$$4/35$$
Eigenvalues of the norm kernel 
$$\langle n, L | \widetilde{n}, L \rangle_A = \Lambda_n \delta_{n,\widetilde{n}}$$

#### Inter-cluster wave function in r- and p-space can be expanded into a set of h.o. functions with the same coefficients

$$f_L(q) = \sum_{n=0}^{\infty} C_n \Phi_{nL}(q, b) \qquad f_L(p) = \sum_{n=0}^{\infty} C_n \Phi_{nL}(p, b)$$

Oscillator functions:

$$\Phi_{nL}(r,b) = (-1)^{n} \mathcal{N}_{nL} b^{-3/2} \rho^{L} e^{-\frac{1}{2}\rho^{2}} L_{n}^{L+1/2} \left(\rho^{2}\right), \quad \rho = \frac{r}{b}$$

$$\Phi_{nL}(p,b) = \mathcal{N}_{nL} b^{3/2} \rho^{L} e^{-\frac{1}{2}\rho^{2}} L_{n}^{L+1/2} \left(\rho^{2}\right), \quad \rho = pb,$$

where b is the oscillator length, and

$$\mathcal{N}_{nL} = \sqrt{\frac{2\Gamma(n+1)}{\Gamma(n+L+3/2)}}$$

#### Neglecting Pauli principle gives folding approximation

$$\Psi_{LM}^{(F)} = \left[\psi_1\left(A_1, s_1, b\right) \psi_2\left(A_2, s_2, b\right)\right]_{\mathcal{S}} \boxed{f_L^{(F)}\left(q\right)} Y_{LM}\left(\widehat{\mathbf{q}}\right)$$

solution of the two-body Schrödinger equation

$$\left\{\widehat{T}_{q} + V^{(F)}(q) + E^{(th)} - E\right\} f_{L}^{(F)}(q) = 0$$

with folding potential

$$V^{(F)}(q) = \int d\tau_1 d\tau_2 |\psi_1(A_1)|^2 |\psi_2(A_2)|^2 \sum_{i \in A_1} \sum_{j \in A_2} \widehat{V}(\mathbf{r}_{ij})$$
$$= \int d\mathbf{r}_1 d\mathbf{r}_2 \underbrace{\rho_1(\mathbf{r}_1) \rho_2(\mathbf{r}_2)} \widehat{V}(\mathbf{r}_{12})$$

single particle local densities of the clusters

### The idea is to compare the exact and folding two-cluster potentials via separable representation of the potentials

$$\left\| \left\langle nL \left| \widehat{V} \right| mL \right\rangle \right\|_{N}$$

$$V_{L}^{(E)}\left(\widetilde{\mathbf{q}}, \mathbf{q}\right) \qquad \qquad V^{(F)}\left(q\right)$$

#### Exact two-cluster potential is a nonlocal operator

$$\begin{split} V_{L}^{(E)}\left(\widetilde{q},q\right) &= \left\langle \widehat{\mathcal{P}}_{L}\left(\widetilde{q}\right) \middle| \widehat{\widehat{V}} \middle| \widehat{\mathcal{P}}_{L}\left(q\right) \right\rangle \\ \widehat{\mathcal{P}}_{L}\left(q\right) &= \widehat{\mathcal{A}} \left\{ \left[ \psi_{1}\left(A_{1},s_{1},b\right) \psi_{2}\left(A_{2},s_{2},b\right) \right]_{S} \delta\left(r-q\right) Y_{LM}\left(\widehat{\mathbf{r}}\right) \right\} \end{split}$$

### The potential energy matrix of dimension NxN approximates the exact potential as follows:

$$\widehat{V}_{N}(r,\widetilde{r}) = \sum_{n,m=0}^{N-1} \Phi_{nL}(r,b) \left\langle nL \left| \widehat{V} \right| mL \right\rangle \Phi_{mL}(\widetilde{r},b),$$

$$\widehat{V}_{N}(p,\widetilde{p}) = \sum_{n,m=0}^{N-1} \Phi_{nL}(p,b) \left\langle nL \left| \widehat{V} \right| mL \right\rangle \Phi_{mL}(\widetilde{p},b),$$

which in limiting case  $N \to \infty$  coincides with the original exact form:

$$\lim_{N \to \infty} \widehat{V}_N(r, \widetilde{r}) = \delta(r - \widetilde{r}) \widehat{V}(r)$$

$$\lim_{N \to \infty} \widehat{V}_N(p, \widetilde{p}) = \widehat{V}(p, \widetilde{p})$$

#### Potential energy matrix can be reduced to a diagonal form

$$\left\|\left\langle nL\left|\widehat{V}\right|mL\right\rangle\right\|_{N}=\|U\|^{-1}\left\|\begin{array}{cccc}\lambda_{1}&&&&\\&\lambda_{2}&&&\\&&\ddots&&\\&&&\lambda_{N}&\end{array}\right\|\|U\|$$
 Orthogonal matrix

#### Eigenvectors of the potential energy matrix define new eigenfunctions

$$\phi_{\alpha}(r,b) = \sum_{n=0}^{N-1} U_n^{\alpha} \Phi_n(r,b), \qquad \sum_{n=0}^{N-1} |U_n^{\alpha}|^2 = 1$$

$$\phi_{\alpha}(p,b) = \sum_{n=0}^{N-1} U_n^{\alpha} \Phi_n(p,b).$$

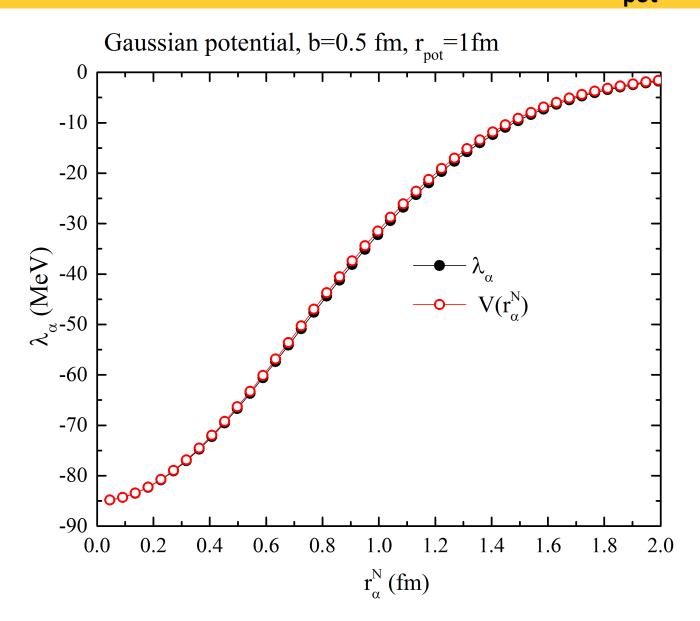
#### Oscillator basis realizes specific form of separable potentials

$$V_N(x, \widetilde{x}) = \sum_{\alpha=1}^{N} \lambda_{\alpha} \phi_{\alpha}(x, b) \phi_{\alpha}(\widetilde{x}, b)$$
$$x = r \text{ or } x = p.$$

 $\checkmark$  The eigenvalues  $λ_α$  coincide with potential energy V(r) at some discrete points  $r_α$ 

$$\lambda_{\alpha} = V(r_{\alpha})$$

### Eigenvalues perfectly coincide with the original potential energy in discrete points for oscillator length $b=r_{pot}/2$



#### Eigenfunctions of the folding potential operator are universal

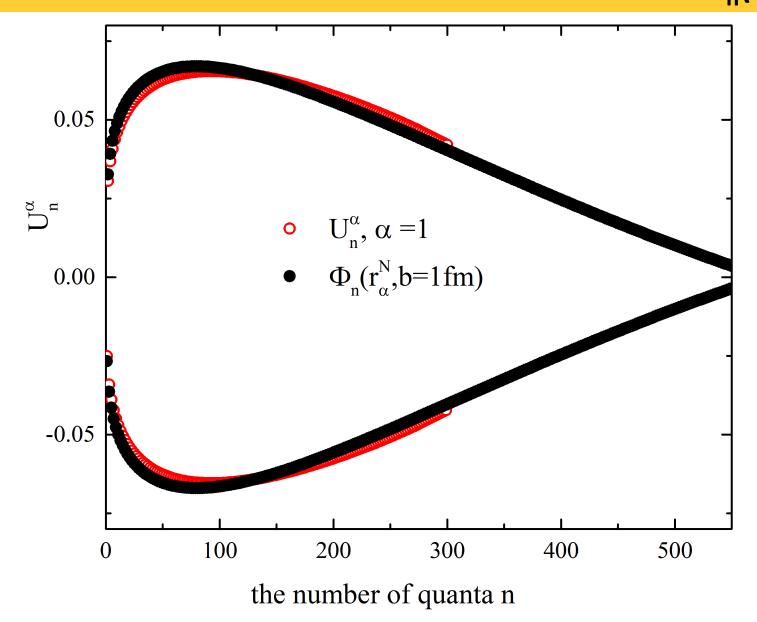
✓ Eigenfunctions of the folding potential energy operator in the momentum representation are Bessel functions

$$\phi_{\alpha}\left(p,b\right) = \mathcal{N}_{\alpha}\sqrt{\frac{2}{\pi}}j_{L}\left(pr_{\alpha}\right)$$

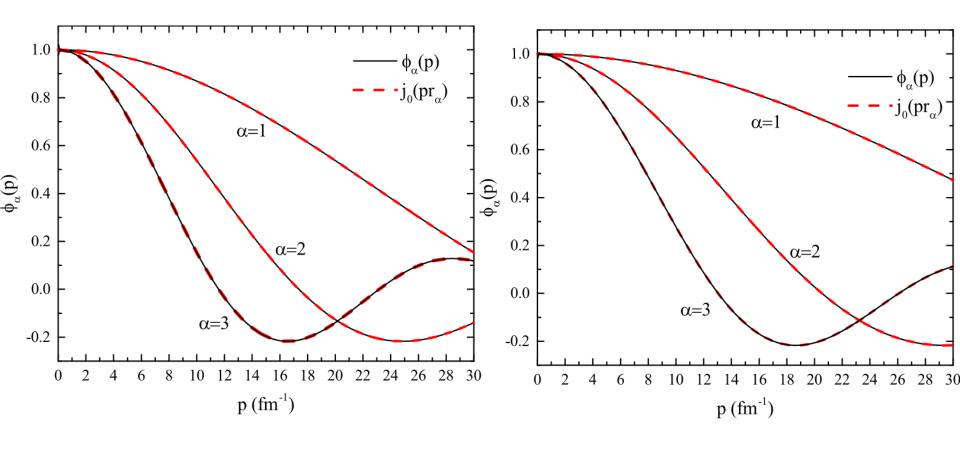
✓ Eigenfunctions of the folding potential energy operator in discrete representation are harmonic oscillator functions

$$U_{n}^{\alpha} = \langle \Phi_{nL}(p,b) | \mathcal{N}_{\alpha} \sqrt{\frac{2}{\pi}} j_{L}(pr_{\alpha}) \rangle = \mathcal{N}_{\alpha} \Phi_{nL}(r_{\alpha},b)$$

### Eigenfunctions $U_{\alpha}^{N}$ of folding potentials in discrete representation are harmonic oscillator functions $\Phi_{n}(r_{\alpha}^{N},b)$



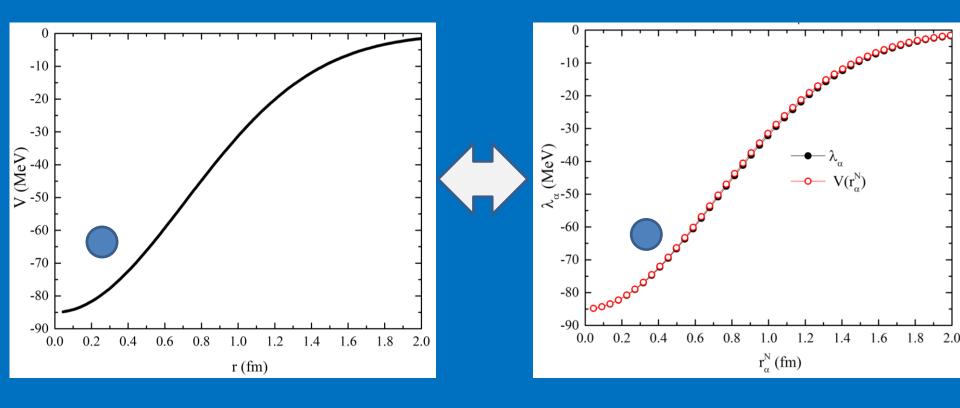
### Eigenfunctions $\varphi_{\alpha}(p)$ of the folding potential operator in the momentum representation are Bessel functions $j_0(pr_{\alpha})$



Gaussian potential, b=r<sub>pot</sub>

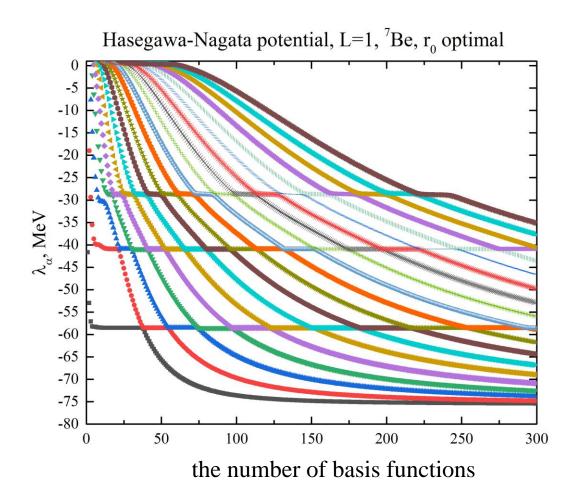
Yukawa potential , b=r<sub>pot</sub>

### Eigenvalues of the potential energy operator reproduce the behavior of the potential in some discrete points



A limited number of eigenstates of a short-range potential energy matrix gives nonzero contribution to the S-matrix

## 2. Eigenvalues of potential energy operator: folding vs exact potential



#### We employ three nucleon-nucleon potentials (+Coulomb) which have been often used in cluster models

#### Input parameters

#### NN potential

- Minnesota potential (MP)
- Volkov potential (VP)
- Hasegawa-Nagata potential (MHNP)

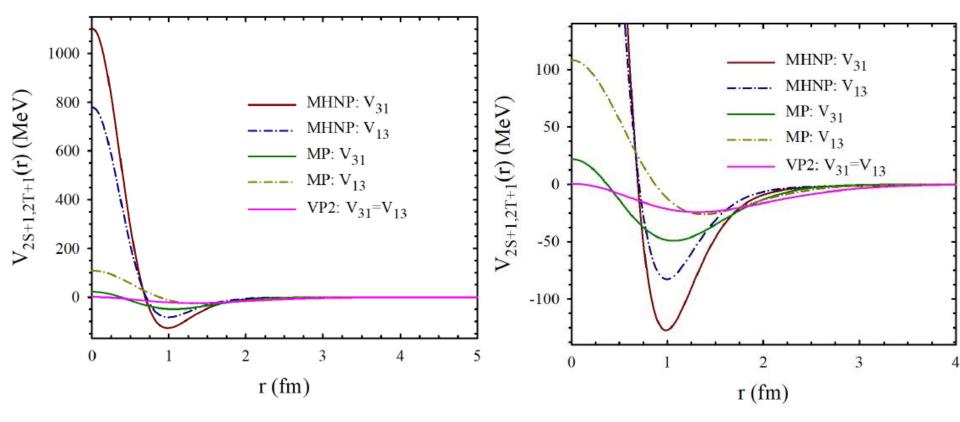
#### **Basis**

300 Oscillator functions

#### Adjustable parameters

Oscillator length **b**: is adjusted to minimize energy of the two-cluster threshold

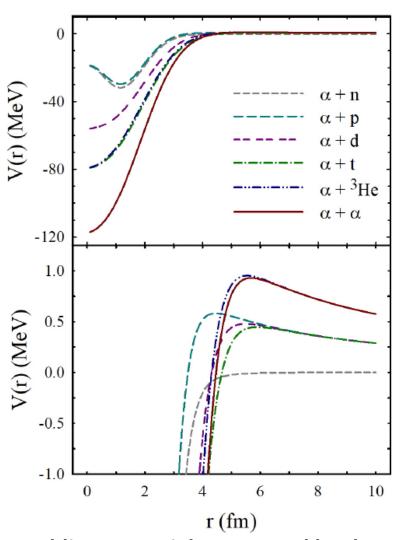
### The larger is the core in the nucleon-nucleon potential, the deeper is its attractive part



Even components of the potentials as a function of distance between nucleons

Attractive part of the even components of the potentials

#### Despite of the huge core in MHNP nucleon-nucleon potential, there is no such a core in cluster-cluster folding potential



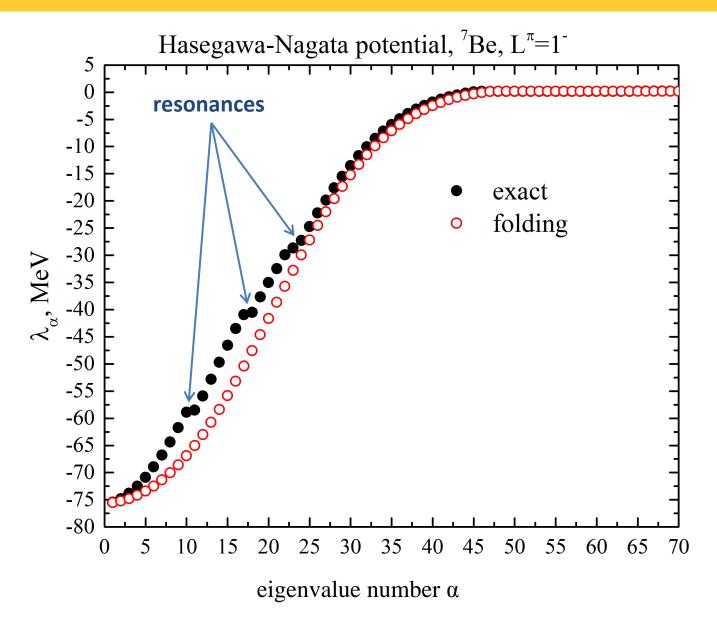
V(r) (MeV)  $\alpha + {}^{3}\text{He}$  $\alpha + \alpha$ -60 1.0 V(r) (MeV) 0.5 -0.52 8 10 0 r (fm)

Folding potentials generated by the MHNP

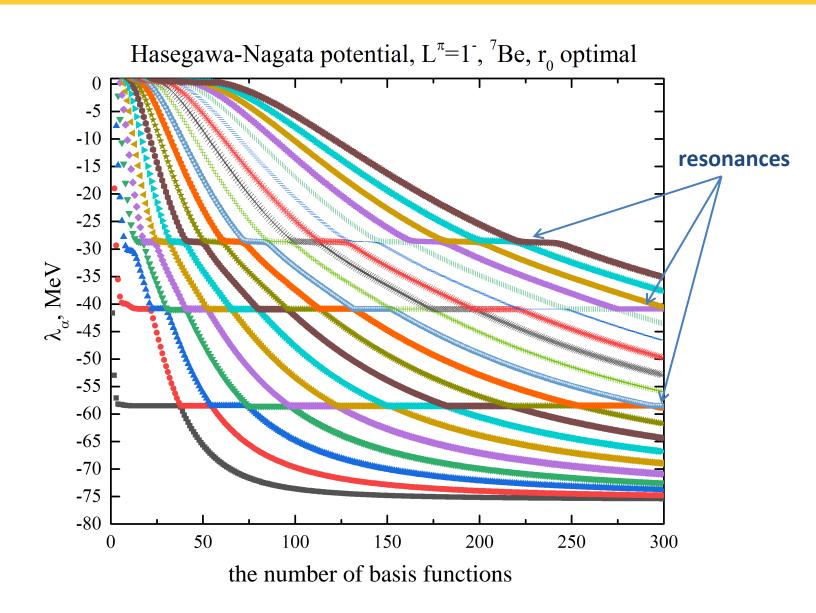
Folding potentials generated by the VP

19/35

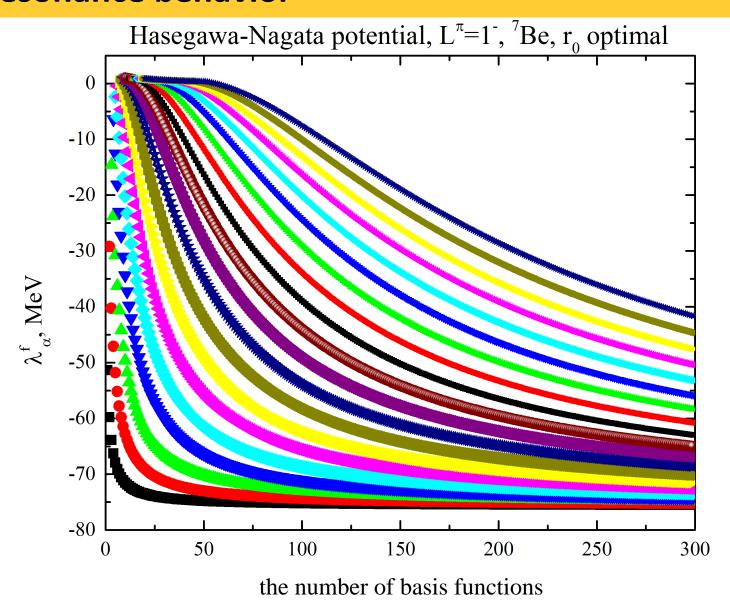
#### Eigenvalues of the exact and folding potential energy matrix are quite close to each other



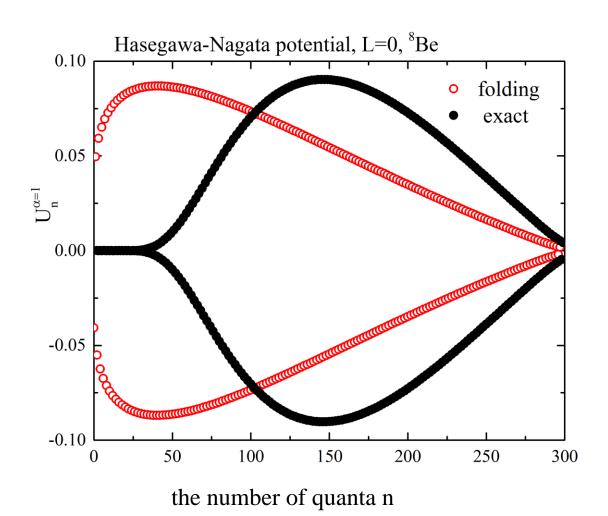
#### Dependence of eigenvalues of the exact potential on the number of functions exhibits resonance behavior



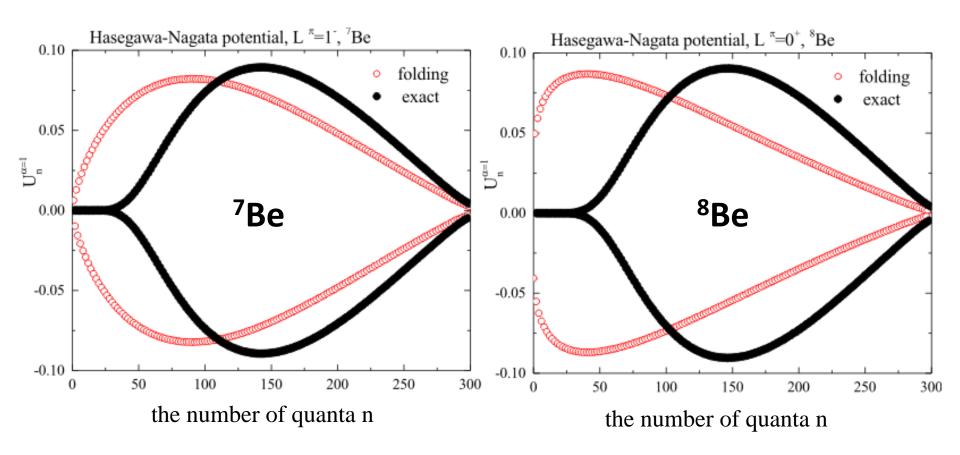
#### Contrary, none of the eigenstates of the folding potential has a resonance behavior



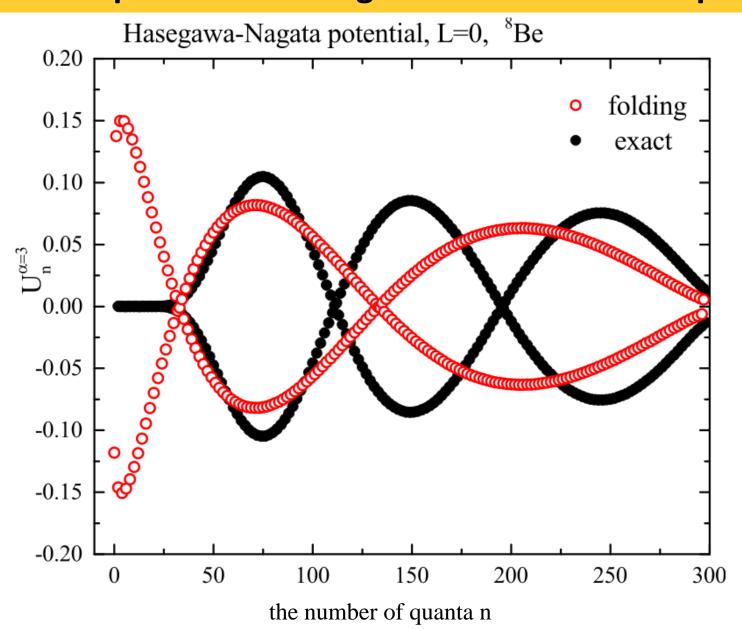
## 3. Eigenfunctions of potential energy operator: folding vs exact potential



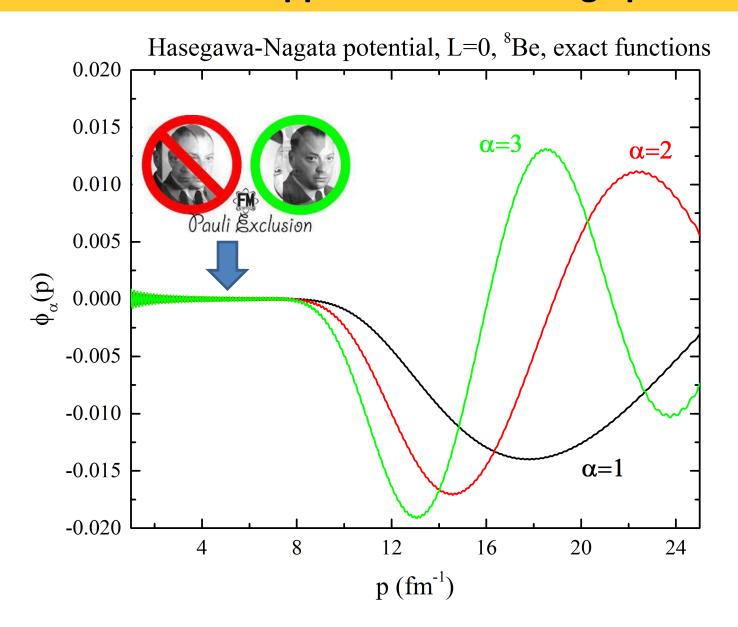
#### The eigenfunctions of the exact potential corresponding to non-resonance values of $\alpha$ is suppressed at the range n<50



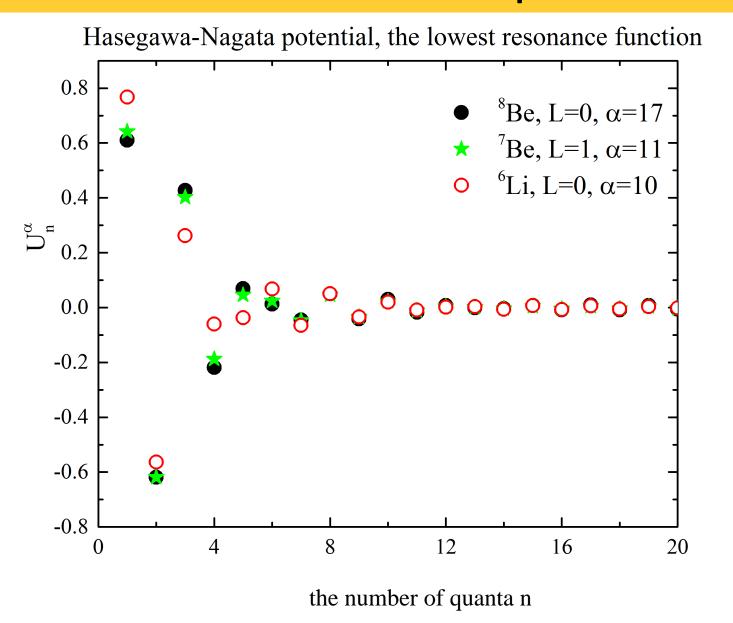
#### Eigenfunctions of folding potential has a maximum at lower number of quanta n than eigenfunctions of exact potential



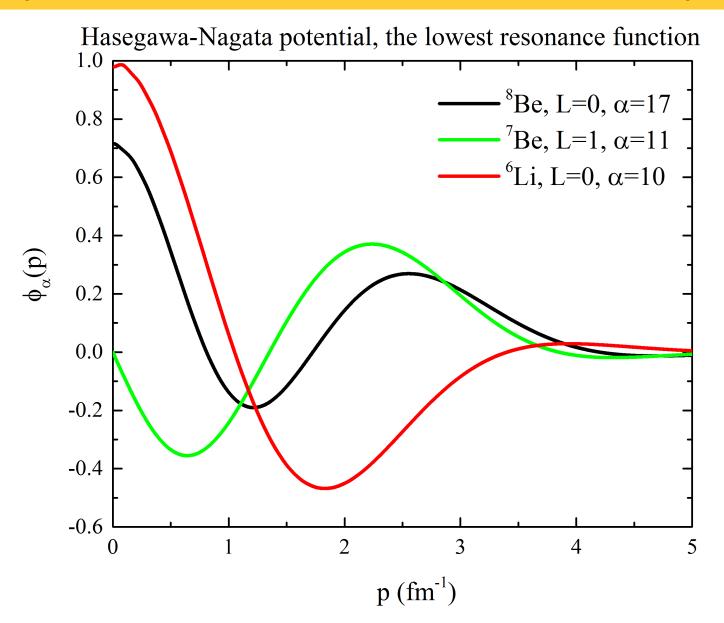
#### Non-resonance eigenfunctions of the exact potential in p-representation are suppressed in the range p<10 fm<sup>-1</sup>



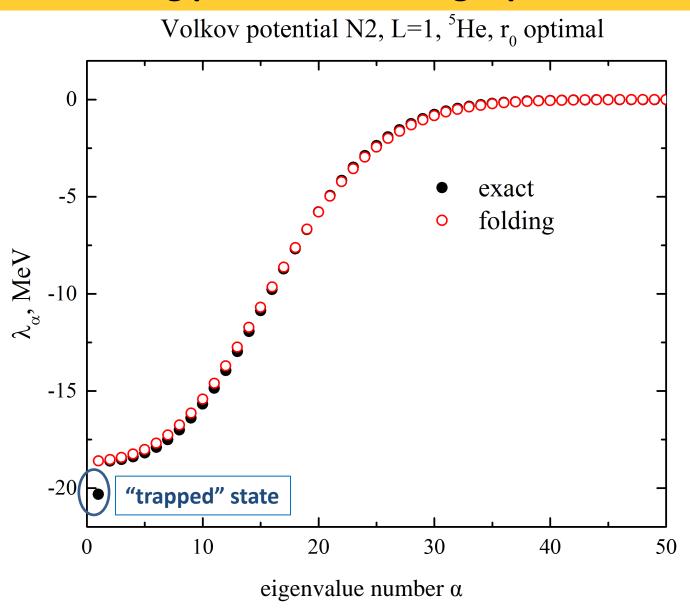
#### Eigenfunctions of resonance states of the exact potential are localized at low values of oscillator quanta n<10



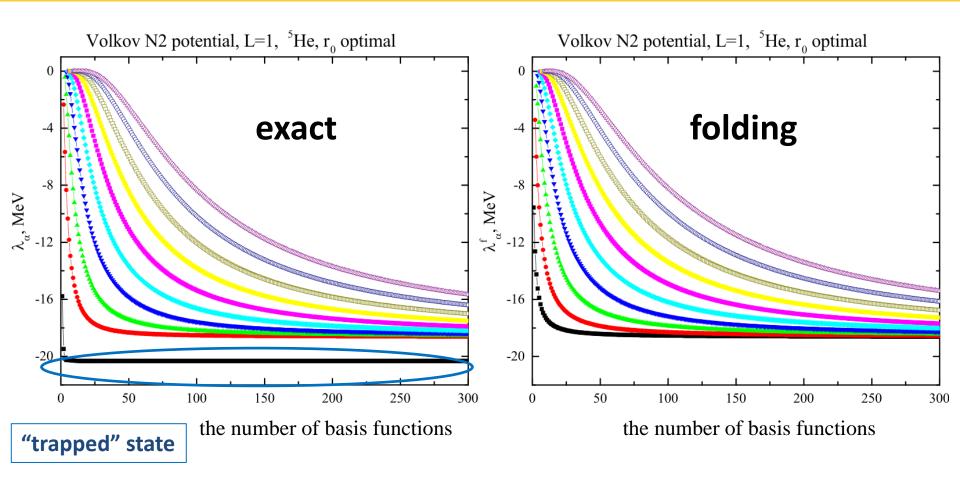
### Eigenfunctions of resonance states of the exact potential in p-representation are localized at low values of p



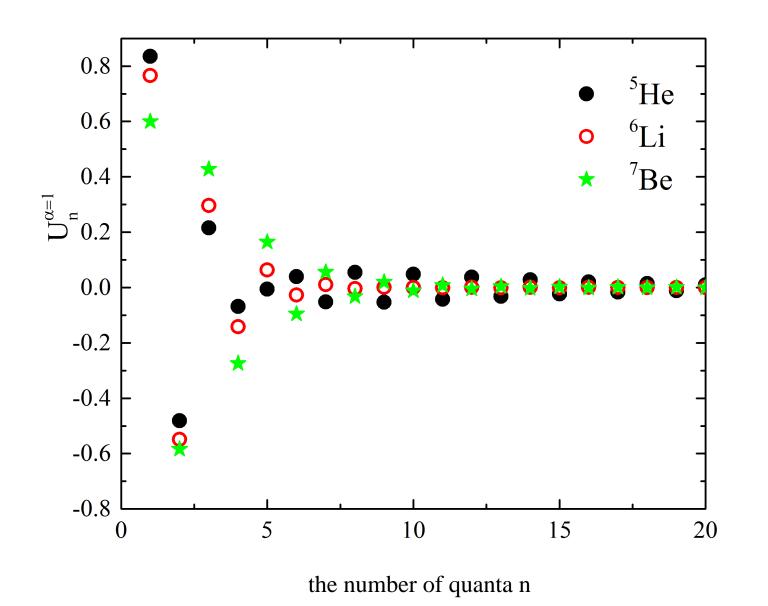
### The eigenvalues of the exact Volkov N2 potential differ from those of the folding potential at a single point $\alpha=1$



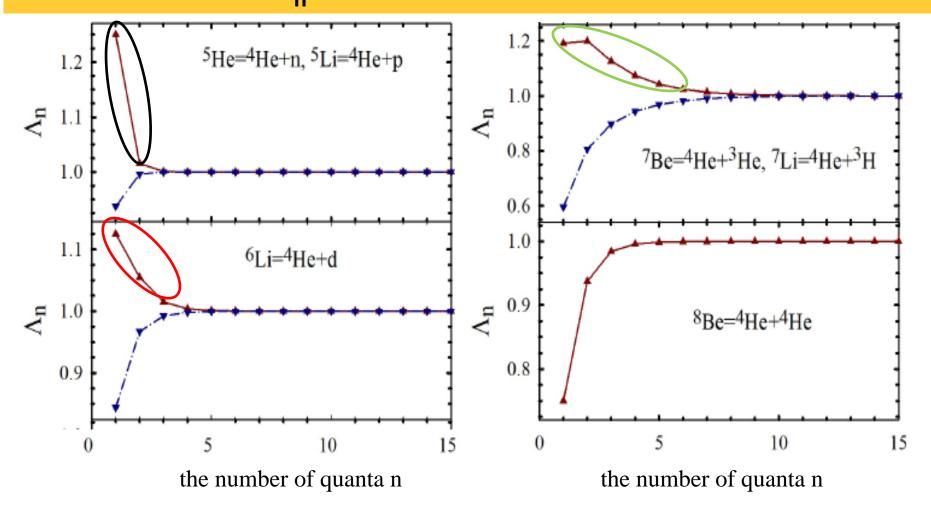
# Dependence of eigenvalues of the exact Volkov N2 potential on the number of basis functions shows the existence of a "trapped" state at $\alpha$ =1



### Eigenfunction of a "trapped" state in Volkov N2 potential is similar to the resonances in Hasegawa-Nagata potential

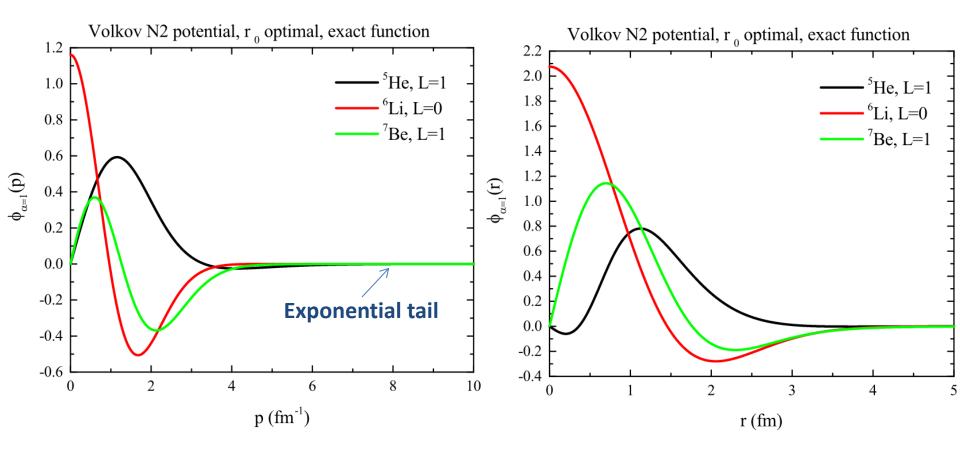


#### A "trapped" state in Volkov N2 potential appears only for the cluster configurations characterized by eigenvalues of the norm kernel $\Lambda_n>1$



Eigenvalues of the norm kernel for lightest p-shell nuclei

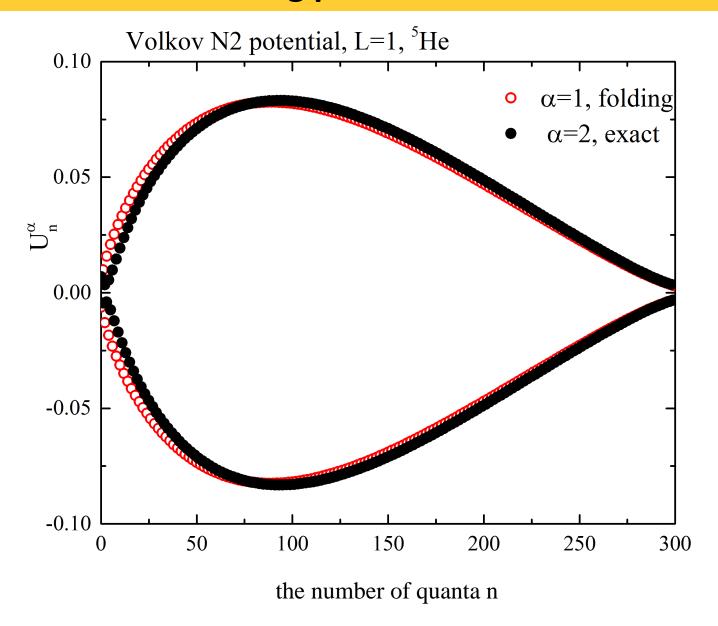
### With increasing momentum eigenfunctions of a "trapped" state in p-representation decrease exponentially



Momentum representation

**Coordinate representation** 

#### All other eigenfunctions of exact Volkov potential are quite close to those of the folding potential

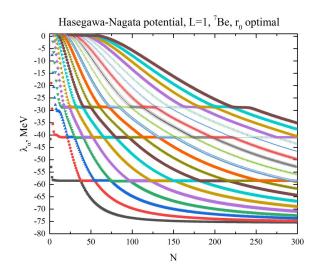


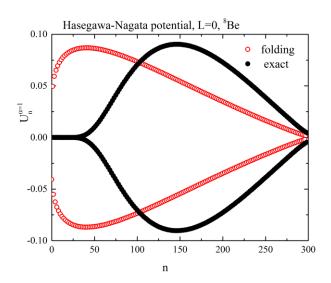
#### Diagonalization of the potential energy matrix proposes a self-consistent way of reducing a nonlocal potential of two-cluster systems to the local form

1. Dependence of eigenvalues of the <u>exact</u> potential on the number of functions exhibits resonance behavior



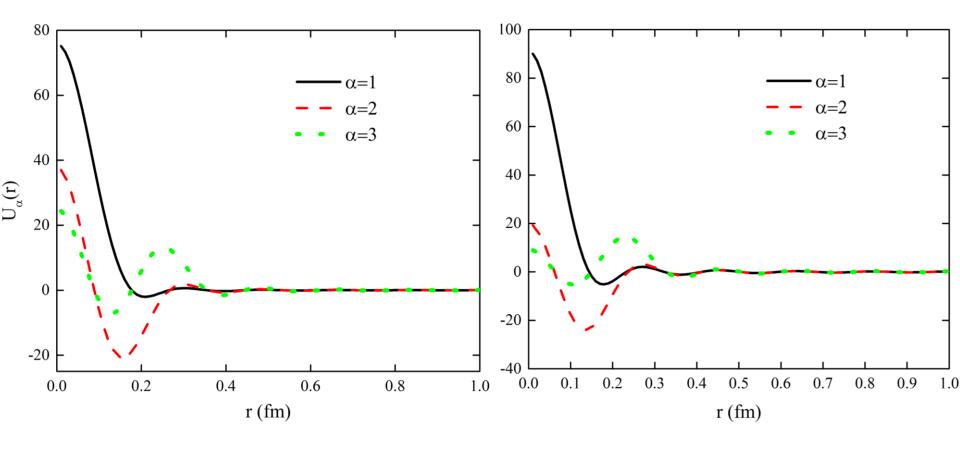
2. Eigenfunctions of the <u>exact</u> potential essentially differ from those of folding potential





#### Slides for answering questions

### The smaller is the eigenvalue number $\alpha$ , the more the corresponding eigenfunction $U_{\alpha}(r)$ resembles $\delta$ -function



Gaussian potential, b=r<sub>pot</sub>

Yukawa potential , b=r<sub>pot</sub>

### Discrete coordinates $r_{\alpha}$ define the location of the $\alpha$ -th zero of the eigenfunction in harmonic oscillator representation

$$U_{N+1}^{\alpha} = \mathcal{N}_{\alpha} \Phi_{N+1,L} (r_{\alpha}, b) = 0$$

They are the zeros of the Laguerre polynomial  $L_N^{L+1/2}\left(
ho
ight)$ 

For 
$$\rho = r_{\alpha}/b \ll R_{N}$$
  $R_{N} = \sqrt{4N + 2L + 3}$ 

$$r_{\alpha} = \frac{\pi b \left(\alpha + \frac{1}{2}L\right)}{R_N}$$