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Motivations

Experimental evidence for the cluster structure of light nuclei is
well documented [Freer, 2007 and references therein]

I α decay in 8Be
I the Hoyle state in 12C
I Observations of many systems predicted in the Ikeda

diagram
I α-cluster structure in 56Ni [H Akimune et al, 2013]
I α-cluster structure in the ground state of 40Ca displayed in a

(p,pα) knockout reaction [A.A Cowley, 2013]

Effective field theories (EFTs) provides a controlled framework to exploit the separation of scales in
nuclei, by now mainly few-body system have been studied within the EFTs and much success have
been achieved [P.F Bedaque, U. van Kolck, 2002][E.Braaten, H-W Hammer, 2006]

Our purpose is to describe halo or cluster nuclei (e.g.6He, 12C,9Be, . . . ) and some reactions of
astrophysical interest, specializing in very low energies where clusters of nucleon behave coherently

To describe such cluster nuclei we use an EFT formulated with contact interactions among nucleon
and alpha-particles
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Cluster Effective Field Theory

Many nuclei have the probability distribution of the valence neutrons that extend beyond the core (halo
nuclei), others some parts of the system which can be seen as separated subsystems (Borromean nuclei).

These cluster nuclei can be well described by an EFT. We focus on the Borromean system provided by the
nucleus of 9Be

The energy needed in order to separate the system into the three effective degrees of freedom is:

B(9Be) = BE(9Be)− 2BE(α) = 1.572MeV

and the break-up threshold of 4He into 3H + p:

Sp(4He) = 19.813MeV

⇒ Separation of scales, needed for an EFT approach.
The two types of subsystems are the αα pair and the αn one. The αα interaction is dominated by the 1S
virtual state, while the αn interaction has a resonance in the 2P 3

2
one at low energies.
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Power Counting
αn
From a physical interpretation one would expect that the two scales are given by

Mlo =
√

2µαnQαdecay(5He) ≈ 30MeV Mhi =
√

2µαnSp(4He) ≈ 140MeV

We adopt the following power counting [Bedaque et. al, 2003]
1
a1
∼ M2

loMhi and r1 ∼ Mhi

a1 being the scattering length and r1 the effective range.
Using experimental values for a1 and r1:

Mlo ≈ 50MeV Mhi ≈ 170MeV

αα
Here we have three different scales of interest:

Mlo =
√

2µααQαdecay(8Be) ≈ 20MeV Mhi =
√

2µααSp(4He) ≈ 260MeV and kC = 4αµαα.

With the following power counting

a0 ∼
M2

hi

M3
lo

and r0 ∼
1

3kC
∼

1
Mhi

the known energy resonance position and width are reproduced and using again the experimental values we
get: Mlo ≈ 20MeV Mhi ≈ 170MeV
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EFT expansion validity

In the αn case the Mlo
Mhi

expansion is up to NLO with an error of order:

O
(

Mlo,αn

Mhi,αn

)
∼ 0.3

In the αα expansion we consider the terms up to NLO:

O
(

Mlo,αα

Mhi,αα

)
∼ 0.1

In order to evaluate the range of validity of our EFT, we should also take a look to the breakdown
scale of our system

I Since we have two two-body subsystems, we have also two different high momentum scales
⇒ For the three-body problem we have to take the strictest constraint

Mhi = Min{Mhi,αn,Mhi,αα}
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The Potentials
The short-range interaction between two particles can be expanded in a series of a contact term and its
derivatives

In our particular case we describe the interaction of the two couples, αn and αα, with potentials of the
form [P.Recchia, 2015]:

〈x|V|x′〉 =

(
λ0 + λ1(∇2 +∇′2)

)
δ(x− x′)δ(x)

In momentum space:

V(p, p′) = λ0 + λ1(p2 + p′2) =

1∑
i,j

p2iλijp′2j

where p and p′ are the relative momenta and:

λ =

(
λ0 λ1
λ1 0

)
λ0, λ1 = coefficients to be determined
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In general we can expand a potential in partial-wave components

V(p, p′) = plp′lg(p)g(p′)
1∑

ij=0

p2iλijp′2j(2l + 1)Pl(p̂ · p̂′)

Pl= Legendre polynomial and g(p) regulates the short-distance dependence of the interaction:

g(p = 0) = 1 and g(p→∞) = 0

i and j could be larger than 1⇒ we limit them in order to get a phase shift expansion up to the
effective range order
Partial wave expansion⇒ in the 9Be problem the two interactions have both a dominant wave
(l = 0 for αα, l = 1 for αn)
In the αα case we have also a long range Coulomb potential VC

Our aim is to find an explicit expression for the coefficients λ0 and λ1 in terms of the scattering
length, on the effective range and with a dependence on a cutoff Λ

Λ is necessary in our model to take care of the ultraviolet divergences
We choose the cutoff regularization⇒ it reproduce known features (e.g the negative sign of the
coefficients in the effective range expansion beyond the scattering length)
We take

g(p) = exp−( p
Λ

)2
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λ0, λ1 coefficient & Wigner Bound

The coefficients for the potential are found from the Lippman-Schwinger equation:
αn

T(p, p′) = V(p, p′) +

∫
dq

(2π)3
V(p, q)

1

E − q2

2µαn
+ iε

T(q, p′)

αα

TSC(p, p′) = 〈Ψ(−)
p |VS(p, p′)|Ψ(+)

p 〉 −
∫ dp′′

(2π)3 〈Ψ
(−)
p′ |VSG(+)

C |Ψ(+)
p′′ 〉

1

E− q2
2µαn

+iε
T(p, p′′)

Ψ
(±)
p 〉 = 1 + G±C |p〉 , G±C = the retarded/advanced Coulomb Green′s function

Putting the partial wave decomposition into the Lippman-Schwinger equations we can extract the
coefficient comparing the on shell T-matrix with the effective range expansion up to k2 order

I We get two different solutions: one with positive λ0, the other with negative

The presence of a Wigner bound [E.P. Wigner,1955]

r ≤ 2[R−
R2

a
+

R3

3a2
]

r = effective range parameter , a = scattering lenght , R = interaction rate

limit the cutoff Λ⇒ ΛMAX
αn = 340MeV ΛMAX

αα = 230MeV
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αα scattering phase shifts

Negative λ0
Positive λ0

[C. Ji]

Choosing the regulator g(p) = exp−( p
Λ

)2
we have a good agreement with experimental data
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Nonsymmetrized Hyperspherical Harmonics

The aim is to calculate the ground-state energy of the 9Be by diagonalizing the Hamiltonian on a
proper basis

I We work in the momentum space and we use a Nonsymmetrized Hyperspherical Harmonics
basis (NSHH)⇒ similar to NSHH in coordinate space[M.Gattobigio, et. al,
2011] [S.Deflorian, et. al., 2013]

I We extract the states with a chosen symmetry using the Casimir operator for a set of Ns
elements

Ĉ(N1, · · · ,Nn) =
∑n

s=1 bΛs Ĉs(Ns) ; Ĉs =
∑Ns

j>i P̂ij

bΛs =

{
1 Λs = A,M
−1 Λs = S

P̂ij = permutation operator

The Ĉ(N1, · · · ,Nn) operator commutes with the Hamiltonian, diagonalizing the matrix
H̃ = Ĥ + γĈs:

Ẽk,Λ = Ek,Λ + γ
∑n

s=1 bsλΛs (k = 0, 1, 2, · · · ,Nmax(Λ)) γ >
|Emin|∑n

s=1 Ns

The employment of the NSHH basis avoids the explicit symmetrization procedure

Its extra flexibility allows to pass from one physical model to another
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Convergence of ground state energy

K Egs[MeV]
3 -1.1582708
5 -1.2453006
7 -1.2593364
9 -1.2611099
11 -1.2624669
13 -1.2634732
15 -1.2641629
17 -1.2646203

Rapid convergence increasing the
number of basis radial functions

K Egs[MeV]
2 -12.569698
4 -14.215357
6 -14.345383
8 -14.364673

10 -14.370449
12 -14.375405
14 -14.377645
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Dependence on the cutoff

To eliminate cutoff
dependence a 3-body
force is required
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Other examples

Elena Filandri (Un. di Trento) September 4, 2019 14 / 16



Conclusion & Future perspectives

In our work we have studied 9Be ground state with non-local αn and αα potentials derived from
Cluster EFT

I The potentials are regularized by a Gaussian cutoff and the potential parameters are fitted to
reproduce the scattering parameters in the calculated T-matrix

I We implemented such non-local potential models in a NSHH code in momentum space

For a selected cutoff value and a solution of λ0, λ1 we are able to reproduce the experimental value
of ground state energy for most of the studied nuclei

I The strong cutoff dependence and the case of 12C indicate something missed in the
description

Work is in progress for · · ·
Inclusion of three body force
Calculation of the cross-section of 9Be photodisintegration:

9Be + γ → α+ α+ n

Inverse reaction is important for the formation of 12C in supernovae events as an alternative to triple
alpha process

I The prediction of the photodisintegration will be realized with the LIT method
[V.D Efros, W. Leidemann and G. Orlandini, 1994]
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Thank you for your attention
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