Electric-dipole transitions in ⁶Li with a fully microscopic six-body calculation

The 24th European Conference on Few-Body Problems in Physics
University of Surrey, Guildford, UK
2019.9.2-6

Wataru Horiuchi (Hokkaido Univ.)

Collaborator: Shuji Satsuka (Hokkaido Univ.)

Nuclear clustering and E1 transition

- Nuclear clustering play an important role in light N=Z nuclei (e.g. Ikeda diagram, Hoyle state in ¹²C)
- Electric-dipole (E1) transition
 - Leading order of electric-multipoles
 - Giant dipole resonance (GDR) phenomena for all nuclei
 - A probe of the structure information
 - Exploring new exotic excitation mode

E.g. neutron rich unstable nuclei

Vibration of valence nucleons against the core

A variant of the macroscopic picture of giant dipole resonance (GDR)

Goldhaber-Teller, Steinwedel-Jensen models

Soft dipole mode

K. Ikeda, N. Takigawa, H. Horiuchi, PTPS52 (1972)

Recent photoabsorption measurement of ⁶Li

T. Yamagata, S. Nakayama, H. Akimune, S. Miyamoto, Phys. Rev. C 95, 044307 (2017)

- Low-lying photoabsorption mainly occurs through E1 transition
- A two peak structure is found Their interpretation
 - First peak: GDR of ⁶Li?
 - Second peak: GDR of alpha cluster in ⁶Li?
- Is the interpretation is correct?
- What is the role of the nuclear clustering in ⁶Li
 - → possible to find new modes in other nuclei

Microscopic six-body calculation

Variational calculation for many-body quantum system

- Many-body wave function Ψ has all information of the nucleon dynamics
- Solve many-body Schoedinger equation
 - ⇔ Eigenvalue problem with Hamiltonian matrix

$$H\Psi = E\Psi$$

- Variational principle $\langle \Psi | H | \Psi \rangle = E \ge E_0$ ("Exact" energy)

 (Equal holds if Ψ is the "exact" solution)
- Expand the wave function with the explicitly correlated Gaussian functions

$$\Psi = \Sigma_k c_k \exp\{-\Sigma_{i,j} \beta_{ij}^k (r_i - r_j)^2\}$$

- Optimal parameters β^k_{ij} are selected stochastically
 Stochastic Variational Method K. Varga and Y. Suzuki, PRC52, 2885 (1995).
 - 1. Randomly generate candidates
 - 2. Calculate energy for each candidate
 - 3. Select the basis which gives the lowest energy among them
 - 4. Increase the basis size
 - 5. Return to 1. and repeat the procedure until energy is converged
 - → accurate solution can be obtained with a small basis size

Ground-state properties of ⁶Li

$$H = \sum_{i=1}^{N} T_i - T_{cm} + \sum_{i < j} v_{ij}$$

Free of spurious c.m. motion

v_{ii}: Minnesota potential

Reasonable descriptions of s-shell nuclei

"u" ⇔ odd-wave strength

Converged only with 600 basis states

Note: 15 parameters for each basis

и	$E_0(^6\text{Li})$	$E_0(\alpha)$	S_{pn}	r_m	r_p	r_n	r_{pp}	$S_{\alpha d}^2$
1.00	-34.63	-29.94	4.7	2.20	2.20	2.20	3.62	0.856
0.93	-33.63	-29.90	3.7	2.33	2.34	2.33	3.86	0.869
0.87	-32.94	-29.87	3.1	2.45	2.46	2.45	4.07	0.882
Expt.	-31.99	-28.30	3.70		2.452			

Cluster degrees of freedom

Six-body calculation for ⁶He

D. Mikami, WH, Y. Suzuki, Phys. Rev. C 89, 046303 (2014)

Distance between two protons

A measure of alpha clustering

- The ratio is unity up to 20 MeV
 Three-body model for the excited state is valid up to 20 MeV
- Large core distortion in the GDR region >30 MeV

Extension to ⁶Li case

- Proton in valence or cluster cannot be distinguished
- Spectroscopic factors $S_{ab}^2 = \left| \left\langle \Psi^{(a)} \Psi^{(b)} \middle| \Psi_{JM_J}^{(6)}(E) \right\rangle \right|^2$, A more direct measure of the nuclear clustering

Configurations for the final state

Basis functions for all subsystems are obtained by SVM

Correlated Gaussian + global vector

$$F_{LM_L}(v, A, \mathbf{x}) = \exp\left(-\frac{1}{2}\tilde{\mathbf{x}}A\mathbf{x}\right)\mathcal{Y}_{LM_L}(\tilde{v}\mathbf{x})$$
$$\tilde{\mathbf{x}}A\mathbf{x} = \sum_{i,j=1}^{N-1} A_{ij}\mathbf{x}_i \cdot \mathbf{x}_j \quad \tilde{v}\mathbf{x} (= \sum_{i=1}^{N-1} v_i \mathbf{x}_i).$$

E1 operator

$$\mathcal{M}_{1\mu} = e \sum_{i \in p} (\mathbf{r}_i - \mathbf{x}_6)_{\mu} = \sqrt{\frac{4\pi}{3}} e \sum_{i \in p} \mathcal{Y}_{1\mu} (\mathbf{r}_i - \mathbf{x}_6)$$

(i)Single particle excitations

 $M_{1\mu}(E1)\Psi_{\rm i}(^{6}{\rm Li})$

"Coherent E1 state"

Well account for the E1 sumrule

 3×600 basis states

(ii) α +n+n disintegration

 $\Psi_i(^4\text{He})\chi(R, r)$

valence nucleon excitation

2 × 8100 basis states

(iii)h+t disintegration

Ψ_i(³He)Ψ_i(³H)χ(R)

GDR configuration

490 basis states

Diagonalization with 18490 bases

- Distortion of the clusters are taken into account through their pseudo states
- ~2000 states found below 100 MeV

E1 transition strengths

- E1 strength distribution
 - Some prominent strengths around 12, 23, 33 MeV
- Categoize them with respect to the spectroscopic factors: α +p+n, h+t, and the others
- Various excitations appear after opening the h+t threshold

E1 transition densities

$$\rho_{p/n}^{\text{tr}}(r) = \sum_{i \in p/n} \langle \Psi_{J_f}^{(6)} \| \mathcal{Y}_1(\mathbf{r}_i - \mathbf{x}_6) \delta(|\mathbf{r}_i - \mathbf{x}_6| - r) \| \Psi_{J_0}^{(6)} \rangle,$$

$$\langle \Psi_{J_f}^{(6)} \| \mathcal{M}(E1) \| \Psi_{J_0}^{(6)} \rangle = e \sqrt{\frac{4\pi}{3}} \int_0^\infty dr \, \rho_p^{\text{tr}}(r).$$

Goldhaber-Teller (GT) mode: out-of-phase transition between protons and neutrons

Soft GT mode (GT mode of valence nucleon)

Typical GT mode

Photoabsorption of ⁶Li

Phys. Rev. C 95, 044307 (2017)

Note: Only a one-peak structure is found in S. Bacca et al., PRL89, 052502 (2002)

Soft GT excitation

Cluster (³He+³H) exc.

 $S_{ht}^2 \sim 0.85$

Typical GT excitation

 $S_{\alpha pn}^2 \sim 0.2$

 $S_{ht}^2 \sim 0$

E1 excitations of ⁶He

D. Mikami, WH, Y. Suzuki, Phys. Rev. C 89, 046303 (2014)

Transition density (x₆: c.m of ⁶He)

$$\rho_{p/n}^{\mathrm{tr}}(E_{\nu},r) = \langle \Psi_1(E_{\nu}) \| \sum_{i \in p/n} \mathcal{Y}_1(r_i - x_6)$$

$$\times \delta(|\mathbf{r}_i - \mathbf{x}_6| - r) \|\Psi_0\rangle.$$

E1 matrix element
$$\langle \Psi_1(E_\nu) \| \mathcal{M}_1 \| \Psi_0 \rangle = e \sqrt{\frac{4\pi}{3}} \int_0^\infty \rho_p^{\rm tr}(E_\nu, r) dr. \stackrel{\Xi}{\sim} \begin{array}{c} -0.2 \\ 0.2 \\ 0.1 \\ 0.0 \end{array}$$

Summary

- Electric-dipole transitions in ⁶Li with a fully microscopic six-body calculations
 - Explicitly correlated basis approach
 - Distortion of clusters are taken into account
 - Emergence of nuclear clustering
- Nuclear clustering plays an important role in the excitation of light nuclei
 - Various excitation modes appear with increasing the excitation energy following the threshold rule
 - Soft GT dipole mode (4+1+1 cluster), 3+3 cluster, giant dipole excitation modes
 - Exploring soft GT dipole and other cluster excitations (e.g. ⁷Li, ⁹Be, ¹⁸F, ²⁰Ne) are interesting

 S. Satsuka and WH, Phys. Rev. C 100, 024334 (2019)