Electroweak processes in few-nucleon systems

A. Baroni^a & M. Viviani^b

^a LANL, Los Alamos, NM (USA) ^bINFN, Sezione di Pisa & Department of Physics, University of Pisa Pisa (Italy)

24th European Conference on Few-Body Problems in Physics

September 1-6, 2019 Guildford, Surrey (UK)

M. Viviani (INFN-Pisa)

Electroweak Processes

Guildford, September 5, 2019 1 / 33

Outline

- Introduction
- Local χ EFT interaction
- EM charge & current
- Weak current
- Quantum computation & Nuclear Physics
- Conclusions & perspectives

Collaborators

- R. Schiavilla Jefferson Lab. & ODU, Norfolk (VA, USA)
- M. Piarulli & S. Pastore GWU, St.Louis (MS, USA)
- L. Girlanda University of Salento & INFN-Lecce, Lecce (Italy)
- A. Kievsky & L.E. Marcucci INFN-Pisa & Pisa University, Pisa (Italy)
- A. Lovato, B. Wiringa, & S. Pieper, ANL, Argonne (IL, USA)

3

EFT approach

Chiral symmetry

- £_{QCD} (almost) invariant under SU(2) "isospin" and "axial" rotations since m_u, m_d "small"
- Invariance also for locals rotations: Introducing external vector and axial currents
- Non-linear realization of the chiral symmetry for nucleons and nuclei [Weinberg, 1968, 1990], [CCWZ, 1969], [Gasser & Leutwyler, 1984], ...
- $\rightarrow \chi \text{EFT} = \text{Lagrangian written in terms of nucleonic and pionic d.o.f.} automatic inclusion of external vector and axial currents$
- Infinite number of unknown coupling constants (low energy constants LECs)
- All quantities can be written as powers of $Q/\Lambda_\chi,\,Q\sim$ small momenta or the pion mass, $\Lambda_\chi\sim 1~\text{GeV}$

Potentials and currents from χEFT

- To obtain effective operators acting only on nucleons d.o.f.:
 - S-matrix: for a given process $NN \rightarrow NN$ define V so that (on-shell) $\langle NN | T_{EFT} | NN \rangle \equiv \langle NN | T_V | NN \rangle$
 - Unitary transformation: find *U* in order to decouple $|NN\rangle$ Hilbert space from $|NN\pi\rangle$, etc.
- Alternative: Lattice χEFT [Lee et al., 2010]

NN & 3N interaction

For more information see for example [Epelbaum, 2010], [Machleidt & Entem, 2011]

NN interaction

- Jülich N4LO [Epelbaum, Krebs, & Meissner, 2014], [Reinert, Krebs, & Epelbaum, 2017]
- Idaho N4LO [Entem, Machleidt, & Nosyk, 2017]

LEC's fitted to the NN database or πN database

3N interaction

- N2LO [Epelbaum et al, 2002]
- 3N force at N3LO & N4LO [Krebs et al., 2012-2013]

– At N2LO there are two LECS c_D and c_E : fitted to some 3N epxt. data (see later)

- At N3LO no new parameters
- At N4LO 10 new LECs [Girlanda *et al., 2011, 2019*]

Ingredients to study EW transitions

- Initial/final wave functions + transition operators (currents & charges)
- For transition to continuum: scattering wave functions
- Inclusive & semi-inclusive reactions: integral techniques (Lorentz integral transform Laplace integral transform)

Example

Transition $|\alpha\rangle + \gamma \rightarrow |\beta\rangle$

$$\langle \beta | \mathcal{H}_{e.m.} | \alpha; \boldsymbol{q} \lambda \rangle = \langle \Psi_{\beta} | \mathcal{K}_{1} | \Psi_{\alpha} \rangle \qquad \mathcal{K}_{1} = \frac{-e}{\sqrt{2\omega\Omega}} \int d\boldsymbol{x} \; e^{i \boldsymbol{q} \cdot \boldsymbol{x}} \; \widehat{\epsilon}_{\boldsymbol{q}\lambda} \cdot \hat{\boldsymbol{J}}(\boldsymbol{x})$$

- K₁ acts only on the nucleons' d.o.f.
- $|\alpha\rangle$, $|\beta\rangle$ initial & final nuclear states, Ψ_{α} , Ψ_{β} corresponding w.f.
- $\boldsymbol{q}, \omega, \hat{\epsilon}_{\boldsymbol{q}\lambda} = \text{momentum, energy, polarization of the absorbed photon}$

• for virtual photons, one needs also the m.e. of $\hat{q} \cdot \hat{J}$ and ρ

$$J^{\mu}(\boldsymbol{q}) = \int d\boldsymbol{x} \ e^{i\boldsymbol{q}\cdot\boldsymbol{x}} \ \widehat{J}^{\mu}(\boldsymbol{x}) \qquad \mu = 0, 1, 2, 3$$

M. Viviani (INFN-Pisa)

Current conservation (CC) $\nabla \cdot \hat{J}(\mathbf{x}) = -i[H, \rho(\mathbf{x})]$

• Strict interplay between H, \hat{J} and $\hat{\rho}$ [Buchmann *et al*, 1985], [Riska, 1989], [Schiavilla *et al*, 1990]

$$\widehat{\rho}(\mathbf{x}) = \sum_{i=1}^{n} \frac{1+\tau_{z}(i)}{2} \delta(\mathbf{r}_{i}-\mathbf{x}) \quad H = \sum_{i} T_{i} + \sum_{ij} V_{ij} + \cdots \rightarrow \mathbf{J}(\mathbf{x}) = \sum_{i} J_{i}^{(1)} + \sum_{ij} J_{ij}^{(2)}(\mathbf{x}) + \cdots$$

- $J_{ij}^{(2)}(x) =$ meson exchange currents
- Old approach: J constructed not consistently with V; CC verified "by hand" [Marcucci et al., 2005]
- EFT approach: H and J^μ derived from the same Lagrangian [Park et al, 1993], [Kolling et al, 2009], [Pastore et al, 2009], [Schiavilla et al., 2018]
- However:
 - different cutoff used to regularize the short-range parts of V and J
 - different orders of chiral expansions of V and J
- In the present work: same regulators for V and J
- See also [Krebs et al., 2019], for a more systematic approach

Weak transitions

Vector current: CVC hypothesis: V^µ derived from J^µ_{EM}

• Axial current: PCAC (conservation in the limit $m_{\pi} \rightarrow 0$) [Park *et al*, 2003], [Baroni *et al.*, 2015–2016], [Krebs *et al.*, 2016]

M. Viviani (INFN-Pisa)

Electroweak Processes

EFT potentials with Δ -particle d.o.f.

Project

- NN/3N potentials and charge/currents derived form χ EFT with contributions of the Δ -particle d.o.f.
- $\rightarrow \chi \text{EFT}$ with nucleons, pions & Δ 's: See, for example, [Bernard, Kaiser, & Meissner, 1995], [Hemmert, Holstein, & Kambor, 1998], [Krebs, Epelbaum, & Meissner, 2007]
- Further "condition": NN & 3N forces local in r-space [Piarulli et al., 2014-2016]
- Another local *r*-space potential derived from *x*EFT [Gezerlis *et al.*, 2014], [Lynn *et al.*, 2017]

Case	NN	3N
LO Q ⁰		
NLO Q ²		
N2LO Q ³		
N3LO Q4	X	(ㅁ) (큔) (코) (코)

M. Viviani (INFN-Pisa)

Fit & Regularization

Regularization in *r*-space

- Diagrams with pion exchanges ~ ¹/_{rⁿ} [Epelbaum *et al.*, 2004], [Valderrama *et al.*, 2008]
 - Regulated in *r* space with the function

$$C_{R_{\rm L}}(r) = 1 - \frac{1}{(r/R_{\rm L})^6 e^{(r-R_{\rm L})/a_{\rm L}} + 1}$$

Contact terms

- Using Fierz transformation to eliminate ∇^2 terms
- Neglected some terms ~ d²/dr² giving small contributions
- at the end: L^2 and $(L \cdot S)^2$ operators
- Short-range part regularized with

$$\delta(\mathbf{r}) \longrightarrow C_{R_{\rm S}}(\mathbf{r}) = rac{1}{\pi^{3/2} R_{\rm S}^3} e^{-(r/R_{\rm S})^2}$$

Fits & χ^2

- \sim 25 LECs fitted to the NN database
- Interactions /: Fit of data up to 125 MeV
- Interactions //: Fit of data up to 200 MeV
- Choice (*R_L*, *R_S*) = (0.8, 1.2) fm: models *a*
- Choice (*R_L*, *R_S*) = (0.7, 1.0) fm: models *b*

model	E _{Lab} (MeV)	N _{pp+np}	χ^2
la	0–125	2668	1.05
lb	0–125	2665	1.07
lla	0–200	3698	1.37
llb	0–200	3695	1.37

NN phase-shifts and deuteron radial components

n - p T = 0 phase-shifts

Deuteron radial components

э

3N force – choice of $c_D \& c_E$

- For A > 2 inclusion of the 3NF at N2LO [Epelbaum et al, 2002] + Fujita-Miyazawa
- Two LECs to be fixed: c_D & c_E
- Method 1: $B(^{3}H)$ and $a_{n-d}^{(2)}$ la, lb, lla, llb
- Method 2: B(³H) and Gamow-Teller (GT) matrix element la*, lb*, lla*, llb*
- Bound– and continuum..states A = 3 calculations performed using the HH technique [Kievsky et al., 2008]

M. Viviani (INFN-Pisa)

GFMC spectrum of light nuclei

NN+3N interaction: la [Piarulli et al., 2018]

Nice reproduction of the energy levels – 3N force fitted using only A = 3 data!!! but too soft neutron matter EOS – studies with la^*-Ilb^* in progress

M. Viviani (INFN-Pisa)

イロト イ団ト イヨト イヨト

EM transitions

EM charge & current from $\chi {\rm EFT}$

 $[Park \ et \ al, \ 1993], \ \ [Kolling \ et \ al, \ 2009], \ \ [Pastore \ et \ al, \ 2009] \\ Including \ the \ \Delta \ d.o.f. \ \ [Schiavilla \ et \ al., \ 2018]$

Diagrams with the inclusion of the Δ d.o.f. up to N2LO

Determination of the LECs

3 new LECs d_1^S , d_2^S , d_1^V

- d_1^S , d_2^S multiply isoscalar operators
- d₁^V multiplies an isovector operator
- Fitted to µ_d, µ_{3H}, and µ_{3He}

	la*	lb*	lla*	llb*
d_1^S	-0.00999	-0.02511	-0.01170	-0.04955
d_2^S	-0.06571	-0.02384	-0.04714	-0.07947
d_1^V	-0.05120	-0.03509	-0.05128	-0.03880

Isoscalar magnetic moment expt. 0.4257 n.m.

	la*	lb*	lla*	llb*
LO	0.4089	0.4075	0.4091	0.4089
NLO	0.0015	0.0020	0.0012	0.0018
N2LO	-0.0062	-0.0043	-0.0052	-0.0071
N3LO	0.0229	0.0215	0.0218	0.0231
TOT	0.4271	0.4267	0.4269	0.4267

Isovector magnetic moment expt -2.553 n.m.

	la*	lb*	lla*	llb*
LO	-2.1823	-2.1755	-2.1815	-2.1787
NLO	-0.1967	-0.2257	-0.1967	-0.2255
N2LO	-0.0388	-0.0657	-0.0395	-0.0617
N3LO	-0.1355	-0.0864	-0.1354	-0.0872
TOT	-2.5533	-2.5533	-2.5531	-2.5531

Deuteron magnetic moment expt. 0.8574 n.m.

	la*	lb*	lla*	llb*
LO	0.8498	0.8485	0.8501	0.8501
N2LO(RC)	-0.0062	-0.0061	-0.0065	-0.0072
N3LO	0.0137	0.0151	0.0138	0.0145
TOT	0.8573	0.8575	0.8574	0.8574

Deuteron magnetic form factor (1)

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 15 / 33

Deuteron magnetic form factor (1)

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 15 / 33

Deuteron magnetic form factor (1)

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 15 / 33

Deuteron magnetic form factor (2)

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 16 / 33

Deuteron magnetic form factor (2)

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 16 / 33

< 47 ▶

Deuteron magnetic form factor (3)

Problems with some N3LO terms

• "NM"= non minimal $\sim d^S_1$

M. Viviani (INFN-Pisa)

Electroweak Processes

Guildford, September 5, 2019

17/33

Deuteron magnetic form factor (3)

Problems with some N3LO terms

• "NM"= non minimal $\sim d_1^S$

M. Viviani (INFN-Pisa)

Electroweak Processes

Guildford, September 5, 2019 17 / 33

Deuteron magnetic form factor (3)

Problems with some N3LO terms

• "NM"= non minimal $\sim d_1^S$

M. Viviani (INFN-Pisa)

Electroweak Processes

Guildford, September 5, 2019 17 / 33

Trinucleon form factors

Conventional approach [Marcucci *et al.*, 2015] AV18/UIX interaction + meson exchange current [Marcucci *et al.*, 2005]

- thin black line: IA results
- Thick black line: IA+MEC (FULL) results
- Experimental data: see the review paper [Marcucci et al., 2015]

M. Viviani (INFN-Pisa)

M. Viviani (INFN-Pisa)

-

Calculation with the new interactions/currents Isoscalar magnetic form factor 10^{0} Model Ia* 10 $\overline{\underbrace{O}}_{s\underline{H}}^{\Sigma} 10^{-2}$ LO NLO N2LO N3LO 10-3 10 2 3 5 $Q (fm^{-1})$

- A 🖻 🕨

< 47 ▶

Calculation with the new interactions/currents Isovector magnetic form factor

Calculation with the new interactions/currents Isovector magnetic form factor

- 4 – 5

Calculation with the new interactions/currents Isovector magnetic form factor

→ ∃ →

< 47 ▶

Calculation with the new interactions/currents Isovector magnetic form factor

- **→ → →**

< 47 ▶

Calculation with the new interactions/currents Dependence on the interaction

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Calculation with the new interactions/currents ${}^{3}\mathrm{H}$ & ${}^{3}\mathrm{He}$ form factors

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 23 / 33

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 23 / 33

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 23/33

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 23 / 33

Multipole expansion of the EM current operator

$$T_{J,M}^{E} = -i \frac{q^{J-1}}{(2J+1)!!} \sqrt{\frac{J+1}{J}} \int d^{3}x \left[\boldsymbol{\nabla} \cdot \boldsymbol{J}_{C}(\boldsymbol{x}) + \frac{q^{2}}{J+1} \boldsymbol{\nabla} \cdot \left(\boldsymbol{x} \times \boldsymbol{\mu}(\boldsymbol{x}) \right) \right] x^{J} Y_{JM}(\hat{\boldsymbol{x}})$$

Current conservation (CC)

$$\boldsymbol{\nabla} \cdot \boldsymbol{J}(\boldsymbol{x}) + i \Big[H_0, \rho(\boldsymbol{x}) \Big] = 0 \qquad \langle J_f, M_f | \Big[H_0, \rho(\boldsymbol{x}) \Big] | J_i, M_i \rangle = (E_f - E_i) \langle J_f, M_f | \rho(\boldsymbol{x}) | J_i, M_i \rangle$$

- This observable is dominated by the E₁ multipole
- V at LO (one-pion exchange + LO contact terms)
- J at LO+NLO (single nucleon current + one-pion exchange diagrams)
- In this case CC is exactly verified
- However, if V and J do not verify CC, E_l not well calculated
- [Siegert, 1937]: compute E₁ forcing CC

M. Viviani (INFN-Pisa)

M. Viviani (INFN-Pisa)

PRELIMINARY AV18 + new EM currents $E_{cm} = 2 \text{ MeV}$

Data: [Smith & Knutson, 1999]

Big effects from $\langle \Psi_{^{3}\mathrm{He}}|j_{EM}|\Psi_{pd}^{L=1,S=3/2,J}
angle$

Calculations with the new interactions in progress

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 26 / 33

PRELIMINARY AV18 + new EM currents $E_{cm} = 2 \text{ MeV}$

Data: [Smith & Knutson, 1999]

Big effects from $\langle \Psi_{^{3}\mathrm{He}}|j_{EM}|\Psi_{pd}^{L=1,S=3/2,J}
angle$

Calculations with the new interactions in progress

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 26 / 33

Image: A matrix

PRELIMINARY AV18 + new EM currents $E_{cm} = 2 \text{ MeV}$

Data: [Smith & Knutson, 1999]

Big effects from $\langle \Psi_{^{3}\mathrm{He}}|j_{EM}|\Psi_{pd}^{L=1,S=3/2,J}
angle$

Calculations with the new interactions in progress

M. Viviani (INFN-Pisa)

□ ▶ ◀ @ ▶ ◀ ≣ ▶ ◀ ≣ ▶ ■ ラ へ ○ Guildford, September 5, 2019 26 / 33

PRELIMINARY AV18 + new EM currents $E_{cm} = 2 \text{ MeV}$

Data: [Smith & Knutson, 1999]

Big effects from $\langle \Psi_{^{3}\mathrm{He}}|j_{E\!M}|\Psi^{L=1,S=3/2,J}_{pd}
angle$

Calculations with the new interactions in progress

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 26 / 33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

PRELIMINARY AV18 + new EM currents $E_{cm} = 2 \text{ MeV}$

Data: [Smith & Knutson, 1999]

Big effects from $\langle \Psi_{^{3}\text{He}}|j_{EM}|\Psi_{pd}^{L=1,S=3/2,J}
angle$

Calculations with the new interactions in progress

M. Viviani (INFN-Pisa)

Guildford, September 5, 2019 26 / 33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Axial current from χEFT

[Park *et al*, 2003], [Baroni *et al*, 2015], [Krebs *et al*, 2016] Including the ∆ d.o.f.: [Baroni *et al*., 2018]

M. Viviani (INFN-Pisa)

Electroweak Processes

Tritium beta decay

$$d_{R} = -rac{m_{\pi}}{4 \, g_{A} \Lambda_{\chi}} \, c_{D} + rac{m_{\pi}}{3} \left(c_{3} + c_{3}^{\Delta} + 2 \, c_{4} + 2 \, c_{4}^{\Delta}
ight) + rac{m_{\pi}}{6 \, m}$$

[Gardestig and Phillips, 2006], [Gazit *et al.*, 2009], [Schiavilla, 2018] Fit of $B(^{3}H)$ and the GT matrix element in tritium β decay Ia/b* & IIa/b* chiral Hamiltonians [Baroni *et al.*, 2018]

	la*	lb*	lla*	llb*
c _D	-0.635	-4.71	-0.61	-5.25
CE	-0.09	0.55	-0.35	0.05
LO	0.9272	0.9247	0.9261	0.9263
N2LO	0.0345	0.0517	0.0345	0.0515
N3LO	-0.0108	-0.0261	-0.0102	-0.0272
TOT	0.9509	0.9503	0.9504	0.9506

Experimental value 0.9511 \pm 0.0013 (see [Baroni *et al.*, 2016]) Range of c_D and c_E values allowed by the experimental error on GT_{exp}

	la*	lb*	lla*	llb*
CD	(-0.89, -0.38)	(-4.99, -4.42)	(-0.89, -0.33)	(-5.56, -4.94)
CE	(-0.01, -0.17)	(+0.70, +0.40)	(-0.25, -0.45)	(+0.23, -0.13)

M. Viviani (INFN-Pisa)

28/33

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Contributions obtained with the [Baroni *et al.*, 2016] and [Krebs *et al.*, 2017] formulations of the N4LO axial current

	la*	lb*	lla*	llb*
N4LO(B)	-0.0672	-0.0732	-0.0671	-0.0716
N4LO(K)	-0.0364	-0.0540	-0.0365	-0.0543
B-K(OPE)	0.0141	0.0196	0.0142	0.0201
B-K(TPE)	0.0018	0.0024	0.0018	0.0025
B-K(CT)	-0.0467	-0.0412	-0.0466	-0.0399

- OPE = N4LO loop corrections to the OPE axial current
- TPE = N4LO genuine new TPE contributions
- CT = N4LO contact contributions induced by the regularization scheme in configuration space we have adopted
- Contributions at N4LO found to be relatively large and of opposite sign than those at LO
- Difference between the two formalisms at present not clarified

3

イロト 不得 トイヨト イヨト

Quantum computation & Nuclear Physics

A. Roggero [INT, Seattle, WA (USA)] & A. Baroni arXiv:1905:08383 see also [Roggero & Carlson, 2018], [Dumitrescu et al., 2018]

Quantum computers

- Example: 1 qubit = spin of an electron
 - spin up = $|1\rangle$, spin down = $|0\rangle$
 - but are also possible all the superposition states α|1⟩ + β|0⟩...
- Gates: perform simple operation on the qubit
 - X,Y,Z gates = Pauli matrix operations
 - Hadamard gate

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \sim X + Z$$

 "Ancillary" qubit = qubit in a definite known state

arXiv:1905:08383

• Deuteron
$$\Psi = \alpha |S\rangle + \beta |D\rangle$$

- The deuteron can be described by a single qubit!
- Using a "normal" computer, compute the matrix elements

 $\begin{bmatrix} \langle S|H|S \rangle & \langle S|H|D \rangle \\ \langle D|H|S \rangle & \langle D|H|D \rangle \end{bmatrix} = \mathsf{al} + \mathsf{bX} + \mathsf{cZ}$

- Potential used: Argonne V6
- Quantum gates $\rightarrow H\Psi$
- Run on an IBM simulator
- Problems: number of iterations, noise, ...

3

30/33

The deuteron on a quantum computer

A. Roggero [INT, Seattle, WA (USA)] & A. Baroni arXiv:1905:08383

Guildford, September 5, 2019 31 / 33

• • • • • • • • • • • •

Conclusions & perspectives

Conclusions

- Ongoing effort to construct interactions & EW currents from *x*EFT but local in configuration space
- Structure and EW processes in light nuclei using the HH & GFMC techniques

Presented results for

- Magnetic moments and FFs up to A = 3
- Photo-disintegration of the deuteron
- GT matrix element of tritium β decay
- Still something to be clarified . . .
 - Better quantification of "theoretical error"
 - Benchmark calculations

Perspectives

- Work in progress
 - FF of ⁴He
 - p d & d d radiative capture at BBN energies (LUNA experiment)
 - $p p \& p {}^{3}\text{He}$ astrophysical factors
 - ⁶He beta decay
 - . . .
- Further advances:
 - Test of the interactions in p ³He elastic scattering
 - Inclusion of the N4LO contact interaction in the 3N force

Quantum computing of scattering processes n – p, n – d, etc.

M. Viviani (INFN-Pisa)

Electroweak Processes

Guildford, September 5, 2019 32 / 33

э

Conclusions & perspectives

Conclusions

- Ongoing effort to construct interactions & EW currents from *x*EFT but local in configuration space
- Structure and EW processes in light nuclei using the HH & GFMC techniques

Presented results for

- Magnetic moments and FFs up to A = 3
- Photo-disintegration of the deuteron
- GT matrix element of tritium β decay
- Still something to be clarified . . .
 - Better quantification of "theoretical error"
 - Benchmark calculations

Perspectives

- Work in progress
 - FF of ⁴He
 - p d & d d radiative capture at BBN energies (LUNA experiment)
 - $p p \& p {}^{3}He$ astrophysical factors
 - ⁶He beta decay
 - ...
- Further advances:
 - Test of the interactions in *p* ³He elastic scattering
 - Inclusion of the N4LO contact interaction in the 3N force
- Quantum computing of scattering processes n p, n d, etc.

M. Viviani (INFN-Pisa)

Electroweak Processes

32/33

Thank you for your attention!

 $\exists \rightarrow +$