Single- and double- Λ hypernuclei in EFT(π)

Lorenzo Contessi Martin Shäfer Nir Barnea Avraham Gal Jiří Mareš

Focus and goal:

shortage of

 $N-\Lambda$ and $\Lambda-\Lambda$

Unknown

few-body

⁵_{AA}He⁻

nnΛ

 $nn\Lambda\Lambda$

 $n\Lambda\Lambda$

 $np\Lambda\Lambda$

Theoretically difficult to describing all S-wave systems together

J-PARC P75 proposal

Known few-body

Experimentally known Theoretically not described

> *Very few* Double-Λ data

 $^{10}_{\Lambda\Lambda}$ Be $^{6}_{\Lambda\Lambda}He$ $^{11}_{\Lambda\Lambda}$ Be

Experimentally not known Theoretically debated

Separation of scales

 π -EFT (N)

M = Theory break-scale

Q = Typical exchanged momentum

9

B = Typical binding per particle

 π -EFT (Λ)

M = Theory break-scale

Q = Typical exchanged momentum

10

B = Typical binding per particle

Fitting input

$2 \times NN$	a_{NN} (Spin singlet and triplet)
$2 \times N\Lambda$	$a_{N\Lambda}$ (Spin singlet and triplet)
ΛΛ	$a_{\Lambda\Lambda}$

N-Λ scattering lengh

A. Gal et al. - Strangeness in nuclear physics - Rev.Mod.Phys. 88 (2016) no.3, 035004

AA Scattering data

PHYSICAL REVIEW C 91, 024916 (2015)

Results

* ⁵_ΛHe
 * ⁵_{ΛΛ}H
 * *np*ΛΛ

 $^{5}_{\Lambda\Lambda}H$

 $^4_{\Lambda\Lambda} H$

$\Delta B_{\Lambda\Lambda} \begin{pmatrix} 6 \\ \Lambda\Lambda \end{pmatrix} = B_{\Lambda\Lambda} \begin{pmatrix} 6 \\ \Lambda\Lambda \end{pmatrix} - 2 B_{\Lambda} \begin{pmatrix} 5 \\ \Lambda \end{pmatrix}$

 $^{4}_{\Lambda\Lambda}$ H is bound/unbound depending to the theory input

In a nutshell

It is possible to describe them all together. (No overbinding problem!)

 npΛΛ

 Need more precise

 ΛΛ scattering data!

Conclusions

- π -EFT can be applied successfully to Λ hypernuclei: (no catastrophic failure, truncation error of ~ 10% at LO).
- 7 new input data that can be fix on experimental data!
- **Overcomes overbinding** problem (comprehensive description of $A \le 5 \Lambda$ -hyperons)
- No boundstate in $nn\Lambda$, $np\Lambda\left(S = \frac{3}{2}\right)$, $n\Lambda\Lambda$ or $nn\Lambda\Lambda$
- \circ $\, np\Lambda\Lambda$ might be bound for large $a_{\Lambda\Lambda} < -1.5$ fm
- \circ ${}^5_{\Lambda\Lambda}$ He bound ($B({}^5_{\Lambda\Lambda}$ He) = 1.14(1) $^{+(44)}_{-(26)}$ MeV)

- **Extend** this approach to **A > 6** systems.
- \circ Include subleading contributions (explicit Ξ mixing, effective range, ...).

General

$^{5}_{\Lambda}$ He: Overbinding problem

	$B_{\Lambda}({}^{3}_{\Lambda}H)$	$B_{\Lambda}({}^{4}_{\Lambda}H_{g.s.})$	$B_{\Lambda}({}^{4}_{\Lambda}H_{exc.})$	$B_{\Lambda}({}^{5}_{\Lambda}He)$
Exp.	0.13(5) [4]	2.16(8) [5]	1.09(2) [6]	3.12(2) [4]
DHT [7]	0.10	2.24	0.36	≥ 5.16
AFDMCa	-	1.97(11) [8]	-	5.1(1) [9]
AFDMCb'	0.23(9) [13]	1.95(9) [13]	-	2.60(6) [13]
χEFTa	0.11 [10]	2.31 (3) [11]	0.95(15) [11]	5.82(2) [12]
χEFTb	-	2.13 (3) [11]	1.39(15) [11]	4.43(2) [12]

All the energies are in MeV.

- [7] R.H. Dalitz, R.C. Herndon, and Y.C. Tang, Nucl. Phys. B 47, 109 (1972).
- [8] D. Lonardoni, F. Pederiva, and S. Gandolfi, Phys. Rev. C 89, 014314 (2014).
- [9] D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87, 041303(R) (2013).
- [10] R. Wirth et al., Phys. Rev. Lett. 113, 192502 (2014).
- [11] D. Gazda and A. Gal, Phys. Rev. Lett. 116, 122501 (2016); D. Gazda and A. Gal, Nucl. Phys. A 954, 161 (2016).
- [12] R. Wirth and R. Roth, Phys. Lett. B 779, 336 (2018). We thank Roland Wirth for providing us with these values.
- [13] D. Lonardoni arXiv:1711.07521v2 & Private comunication.
- [15] H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89, 142504 (2002); see also Y. Akaishi, T. Harada.

N-Λ scattering data

Alexander et al. : $a_s = a_s$

 $a_s = -1.8 \text{ fm}$ $a_t = -1.6 \text{ fm}$ Sechi-Zorn et al. : $\begin{array}{c} 0 > a_s > -9 \text{ fm} \\ -0.8 > a_t > -3.2 \text{ fm} \end{array}$

G. Alexander, U. Karshon, A. Shapira, et al. Phys. Rev. 173, 1452 (1968)

Sechi-Zorn, B., B. Kehoe, J. Twitty, and R. A. Burnstein, 1968, Phys. Rev. 175, 1735.

TABLE VII ΛN scattering lengths and effective ranges (in fm) for several YN interaction models. For the EFT models, these refer to Λp and to cutoff parameter of 600 MeV.

Model	Reference	a^s	r_0^s	a^t	r_0^t
NSC89	Maessen, Rijken, and de Swart (1989)	-2.79	2.89	-1.36	3.18
NSC97e	Rijken, Stoks, and Yamamoto (1999)	-2.17	3.22	-1.84	3.17
NSC97f	Rijken, Stoks, and Yamamoto (1999)	-2.60	3.05	-1.71	3.33
ESC08c	Nagels, Rijken, and Yamamoto (2015b)	-2.54	3.15	-1.72	3.52
Jülich '04	Haidenbauer and Meißner (2005)	-2.56	2.75	-1.66	2.93
EFT (LO)	Polinder, Haidenbauer, and Meißner (2006)	-1.91	1.40	-1.23	2.20
EFT (NLO)	Haidenbauer et al. (2013)	-2.91	2.78	-1.54	2.72

A. Gal et al. - Strangeness in nuclear physics - Rev.Mod.Phys. 88 (2016) no.3, 035004

Strange

Phys. Rev. 175, 1735. (1968) Phys. Rev. 173, 1452 (1968)

TWO-BODY SCATTERING

ALL PICTURES SHOWN ARE FOR ILLUSTRATION PURPOSE ONLY.

Strange

Physical Review C. 64. 10.1103/PhysRevC.64.044301.

Strange

26

Strange

27

LEC	State	Fitting		2	
<i>C</i> ₀₂	S = 1 , $I = 0$	² H	Boundstate	Two body	
<i>C</i> ₂₀	S = 0 , I = 1	N – N			
<i>C</i> ₀₁	$S = 1, I = \frac{1}{2}$	$\Lambda - N \sim$	Scattering		
<i>C</i> ₂₁	$S = 0$, $I = \frac{1}{2}$	$\Lambda - N \sim$		↓	
<i>C</i> ₀₀	S = 0 , $I = 0$	Λ-Λ ~			
		LEC	State	Fitting	
Three body		D ₁₁	$S = \frac{1}{2}, \qquad I = \frac{1}{2}$	³ H	
▲ ↑		<i>D</i> ₀₁	$S = \frac{1}{2}, \qquad I = 0$	³ _A H	
Boundstate		D ₀₃	$S = \frac{1}{2}, \qquad I = 1$	${}^{4}_{\Lambda}H_{S=0,I=\frac{1}{2}}$	
	Boundstates –	D ₂₁	$S = \frac{3}{2}, \qquad I = 0$	${}^{4}_{\Lambda}H_{S=1,I=\frac{1}{2}}$	
		D ₁₁	$S = \frac{1}{2}$, $I = \frac{1}{2}$	⁶ _{AA} He	
<u>Predic</u>	tions B(⁴ He)	$B(\frac{5}{\Lambda}He)$	$ B\left({}^{5}_{\Lambda\Lambda} H \right) $	e)	

 $V_{2b}^{\lambda} = \sum e^{-\left(\frac{r_{ij}\lambda}{2}\right)^2} \left[C_{10}^{\lambda} P_{[S=1,I=0]}^{NN} + C_{01}^{\lambda} P_{[S=0,I=1]}^{NN} \right]$

