

Properties of heavy mesons at finite temperature

<u>Clòria Montaña</u>, Àngels Ramos and Laura Tolós

24th European Conference on Few-Body Problems in Physics September 5, 2019

Outline

- 1. Motivation
- 2. Model at T = 0
 - 2.1 Results at T = 0
- 3. Finite temperature 3.1 Results
- 4. Conclusions and Outlook

Motivation

- Heavy-ion-collision (HIC) programmes in on-going and upcoming experimental facilities (RHIC, LHC, FAIR) highly demand the theoretical study of hadronic properties under extreme conditions of temperature and density.
- We focus on finite-temperature mesonic (pionic) matter to study the high temperature and low density region of the QCD phase diagram (matter generated in HICs in RHIC and LHC).
- Heavy mesons (D^(*), D^(*), B^(*), B^(*), B^(*)) modify their properties in hot pionic matter.
- Consequences in the behaviour of excited mesonic states, such as $D_{s0}^*(2317)^{\pm}$ and $D_0^*(2300)^0$, dynamically generated in a heavy-light molecular model at finite temperature.

Chiral Lagrangian to NLO in the chiral expansion and LO in the heavy-quark expansion

 $D_i(p_1)$ $D_{i}(p_{3})$ $\mathcal{L}(D^{(*)}, \Phi) = \mathcal{L}_{LO}(D^{(*)}, \Phi) + \mathcal{L}_{NLO}(D^{(*)}, \Phi)$ $D = (D^0 \quad D^+ \quad D_s^+), \quad D_{\mu}^* = (D^{*0} \quad D^{*+} \quad D_s^{*+})_{\mu}$ $\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & \kappa^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \kappa^0 \\ \kappa^- & \bar{\kappa}^0 & -\sqrt{\frac{2}{2}}\eta \end{pmatrix}$ $V^{ij}(s,t,u) = \frac{1}{t^2} \left[\frac{C_{\rm LO}^{ij}}{4} (s-u) - 4C_0^{ij}h_0 + 2C_1^{ij}h_1 \right]$ $- 2C_{24}^{ij} \left(2h_2(p_2 \cdot p_4) + h_4 \left((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3) \right) \right)$ + $2C_{35}^{ij} \left(h_3(p_2 \cdot p_4) + h_5((p_1 \cdot p_2)(p_3 \cdot p_4) + (p_1 \cdot p_4)(p_2 \cdot p_3)) \right) \right]$

1

 $C_{\text{LO},0,1,24,35}^{ij}$: isospin coefficients of the scattering amplitudes of $D^{(*)}$, $D_s^{(*)}$ mesons with π , K, \bar{K} , η mesons for the transition $i \rightarrow j$.

Chiral Lagrangian to NLO in the chiral expansion and LO in the heavy-quark expansion

E.E. Kolomeitsev and M.F.M. Lutz, Phys. Lett. B 582, 39 (2004)

M.F.M. Lutz and M. Soyeur, Nucl. Phys. A 813, 14 (2008)

F.K. Guo, C. Hanhart and U.G. Meissner, Eur. Phys. J. A 40, 171 (2009)

L. S. Geng, N. Kaiser, J. Martin-Camalich and W. Weise, Phys. Rev. D 82, 054022 (2010)

 \mathcal{L}_{NLO} LECs $h_0, ..., h_5$ fitted to Lattice QCD data

 $\mathcal{L}_{\mathrm{LO}}$

1

L. Liu, K. Orginos, F.K. Guo, C. Hanhart and U.G. Meissner, Phys. Rev. D 87, no. 1, 014508 (2013) L. Tolos and J. M. Torres-Rincon, Phys. Rev. D 88, 074019 (2013) M. Albaladejo, P. Fernandez-Soler, F.K. Guo and J. Nieves, Phys. Lett. B 767, 465 (2017) Z.H. Guo, L. Liu, U.G. Meißner, J.A. Oller and A. Rusetsky, Eur. Phys. J. C 79, no. 1, 13 (2019) 🗸

Unitarization using the coupled-channel Bethe-Salpeter approach

- Loop function

$$G_{k} = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - m_{D,k}^{2} + i\varepsilon} \frac{1}{(P-q)^{2} - m_{\Phi,k}^{2} + i\varepsilon}$$

regularized with a cutoff $\left|\vec{q}\right|<\Lambda$

2

Meson-meson molecules

- Identification of resonances in the unitarized scattering amplitudes
- Analytical continuation and poles in the complex-energy plane:
 - Mass

$$M_R = \operatorname{Re} \sqrt{s_R}$$

- Half-width

$$\Gamma_R/2 = \operatorname{Im}\sqrt{s_R}$$

- Coupling constants $|g_i|$ strength of *i*th-channel in the generation of the resonance
- Compositeness X_i amount of ith-channel component of the resonance

Results at T = 0

Parameters of the model and poles: $D_0^*(2300)^0$ (before was $D_0^*(2400)^0$) and $D_{s0}^*(2317)^\pm$

(C, S, I)	Channels	Threshold (MeV)
(1, 0, 1/2)	$D\pi$	2005.28
	$D\eta$	2415.10
	DsK	2463.98
(1, 0, 3/2)	Dπ	2005.28
(1, 1, 0)	DK	2364.88
	$D_{s}\eta$	2516.20
(1, 1, 1)	$D_s\pi$	2106.38
	DK	2364.88

h_0	h_1	h_2	h_3	$h_4 \overline{M}_D^{(*)}$	$h_5 \overline{M}_D^{(*)}$	Λ
0.033	0.45	-0.12	1.67	-0.02	-0.81	$800{ m MeV}$

Values of the LECs and the cutoff $\Lambda.$

Channels in isospin basis.

Results at T = 0

Parameters of the model and poles: $D_0^*(2300)^0$ (before was $D_0^*(2400)^0$) and $D_{s0}^*(2317)^\pm$

(C, S, I)	Channels	Threshold (MeV)
(1, 0, 1/2)	$D\pi$	2005.28
	$D\eta$	2415.10
	DsK	2463.98
(1, 0, 3/2)	$D\pi$	2005.28
(1, 1, 0)	DK	2364.88
	$D_{s}\eta$	2516.20
(1, 1, 1)	$D_s\pi$	2106.38
	DK	2364.88

h_0	h_1	h_2	h_3	$h_4 \bar{M}_D^{(*)}$	$h_5 \overline{M}_D^{(*)}$	Λ
0.033	0.45	-0.12	1.67	-0.02	-0.81	$800{ m MeV}$

Values of the LECs and the cutoff Λ .

Channels in isospin basis.

(C, S, I)	RS	$M_R ({ m MeV})$	$\Gamma_{R}/2({ m MeV})$	$ g_i $ (GeV)	X _i
(1, 0, 1/2)	(-, +, +)	2081.9	86.0	$ g_{D\pi} = 8.9$	$X_{D\pi} = 0.29 - i 0.27$
				$ g_{D\eta} = 0.4$	$X_{D\eta} = 0.00 + i 0.00$
				$ g_{D_S\bar{K}} = 5.4$	$X_{D_S\bar{K}} = 0.01 + i0.05$
	(-, -, +)	2521.2	121.7	$ g_{D\pi} = 6.4$	$X_{D\pi} = 0.02 + i 0.09$
				$ g_{D\eta} = 8.4$	$X_{D\eta} = 0.15 - i 0.27$
				$ g_{\rm D_S\bar{K}} =14.0$	$X_{D_S\bar{K}} = 0.43 + i 0.49$
(1, 1, 0)	(+, +, +)	2252.5	0.0	$ g_{DK} = 13.3$	$X_{DK} = 0.66 + i 0.00$
				$ g_{D_S\eta} = 9.2$	$X_{\rm D_S}\eta = 0.17 + i0.00$

Poles, couplings and compositeness.

M. Cleven, V. K. Magas and A. Ramos, Phys. Rev. C 96, no. 4, 045201 (2017)

M. Cleven, V. K. Magas and A. Ramos, arXiv:1906.06116

1

2

Finite temperature in the Matsubara formalism ($\beta = 1/T$)

$$q^0 \to \omega_n = \frac{i}{\beta} 2\pi n, \quad \int \frac{d^4 q}{(2\pi^4)} \to \frac{i}{\beta} \sum_n \int \frac{d^3 q}{(2\pi)^3} \quad (\text{bosons})$$

Dressing the heavy meson in the loop function

- D-meson self-energy

Loop function at $T \neq 0$

$$G_{D_{i}\Phi_{i}}(E,\vec{p};T) = \int \frac{d^{3}q}{(2\pi)^{3}} \int d\omega \int d\omega' \frac{S_{D_{i}}(\omega,\vec{q};T)S_{\Phi_{i}}(\omega',\vec{p}-\vec{q};T)}{E-\omega-\omega'+i\varepsilon} [1+f(\omega,T)+f(\omega',T)]$$

Spectral functions:

$$S_{D_i}, \quad S_{\Phi_i} \to \frac{\omega_{\Phi_i}}{\omega'} \delta(\omega'^2 - \omega_{\Phi_i}^2), \quad \omega_M = \sqrt{q_M^2 + m_M^2}$$

Bose distribution function at T:

$$f(\omega, T) = \frac{1}{e^{\omega/T} - 1}$$

Regularized with a cutoff $\left| \vec{q} \right| < \Lambda$

Unitarized *T*-matrix at $T \neq 0$

$$T_{ij} = V_{ij} + V_{ik}G_kT_{kj}$$

- Iteration 1 ightarrow Undressed mesons

- Iteration $> 1 \rightarrow$ Dressed heavy meson

Self-energy at $T \neq 0$

Spectral function

$$\mathcal{S}_{D_i}(\omega,ec{q}; au) = -rac{1}{\pi} \operatorname{Im} \mathcal{D}_{D_i}(\omega,ec{q}; au) = -rac{1}{\pi} \operatorname{Im} \left(rac{1}{\omega^2 - ec{q}^2 - m_{D_i}^2 - \Pi_{D_i}(\omega,ec{q}; au)}
ight)$$

Physical interpretation of the thermal bath

$$\begin{aligned} \text{bath} &\to \text{bath} + D_i \Phi_i \qquad \text{bath} + D_i \Phi_i \qquad \text{bath} + D_i \Phi_i \to \text{bath} \\ G_{D_i \Phi_i}(E, \vec{p}; T) &\sim \begin{cases} \frac{[1 + f(\omega_{D_i}, T)][1 + f(\omega_{\Phi_i}, T)] - f(\omega_{D_i}, T)f(\omega_{\Phi_i}, T)]}{E - \omega_{D_i} - \omega_{\Phi_i} + i\varepsilon} \end{cases} \end{aligned}$$

$$\begin{split} & \text{bath} + \bar{D}_i \bar{\Phi}_i \to \text{bath} \qquad \text{bath} \to \text{bath} + \bar{D}_i \bar{\Phi}_i \\ & + \frac{f(\omega_{D_i}, \tau) f(\omega_{\Phi_i}, \tau) - [1 + f(\omega_{D_i}, \tau)] [1 + f(\omega_{\Phi_i}, \tau)]}{E + \omega_{D_i} + \omega_{\Phi_i} + i\varepsilon} \end{split}$$

$$\overline{\Phi}_{i}$$
 $\overline{\Phi}_{i}$ $\overline{\Phi}_{i}$

D_i D_i

$$\begin{split} & \text{bath} + \bar{D}_i \to \text{bath} + \Phi_i \qquad \text{bath} + \Phi_i \to \text{bath} + \bar{D}_i \\ & + \frac{f(\omega_{D_i}, T)[1 + f(\omega_{\Phi_i}, T)] - f(\omega_{\Phi_i}, T)[1 + f(\omega_{D_i}, T)]}{E + \omega_{D_i} - \omega_{\Phi_i} + i\varepsilon} \end{split}$$

$$\begin{split} & \text{bath} + \bar{\Phi}_i \rightarrow \text{bath} + D_i \qquad \text{bath} + D_i \rightarrow \text{bath} + \bar{\Phi}_i \\ & + \frac{f(\omega_{\Phi_i}, T)[1 + f(\omega_{D_i}, T)] - f(\omega_{D_i}, T)[1 + f(\omega_{\Phi_i}, T)]}{E - \omega_{D_i} + \omega_{\Phi_i} + i\varepsilon} \end{split} \bigg\}$$

At zero temperature $\mathbf{f}(\omega,\mathbf{T}=0)=0$

Physical interpretation of the thermal bath

$$G_{D_i\Phi_i}(E,\vec{p};T) \sim \begin{cases} \frac{[1+f(\omega_{D_i},T)][1+f(\omega_{\Phi_i},T)]-f(\omega_{D_i},T)f(\omega_{\Phi_i},T)}{E-\omega_{D_i}-\omega_{\Phi_i}+i\varepsilon} \end{cases}$$

First branch cut (T = 0 cut): $E \ge (m_{D_i} + m_{\Phi_i})$

$$+\frac{f(\omega_{D_i},T)f(\omega_{\Phi_i},T)-[1+f(\omega_{D_i},T)][1+f(\omega_{\Phi_i},T)]}{E+\omega_{D_i}+\omega_{\Phi_i}+i\varepsilon}$$

$$+\frac{f(\omega_{D_i}, T)[1+f(\omega_{\Phi_i}, T)] - f(\omega_{\Phi_i}, T)[1+f(\omega_{D_i}, T)]}{E + \omega_{D_i} - \omega_{\Phi_i} + i\varepsilon}$$

$$+ \frac{f(\omega_{\Phi_i}, \tau)[1 + f(\omega_{D_i}, \tau)] - f(\omega_{D_i}, \tau)[1 + f(\omega_{\Phi_i}, \tau)]}{E - \omega_{D_i} + \omega_{\Phi_i} + i\varepsilon} \bigg\}$$

Additional branch cut (Landau cut): $E \le (m_{D_i} - m_{\Phi_i})$

Loop functions at finite temperature: D with light mesons

Loop functions at finite temperature: D with light mesons

Loop functions at finite temperature: D_s with light mesons

Loop functions at finite temperature: D_s with light mesons

Spectral functions

- Mass shift and width acquisition of the $D_{(s)}$ -mesons in a thermal bath

- Mass shift and width acquisition of the $D_{(s)}$ -mesons in a thermal bath

- Mass shift and width acquisition of the $D^*_{(s)}$ -mesons in a thermal bath

Dynamically generated resonances at finite temperature

Two poles of the $D_0^*(2300)^0$ (before was $D_0^*(2400)^0$)

T-matrix in sector (C, S, I) = (1, 0, 1/2)

 $\begin{aligned} \text{Experimental values} \\ \mathcal{M} &= 2300 \pm 19 \, \mathrm{MeV} \\ \Gamma &= 274 \pm 40 \, \mathrm{MeV} \end{aligned}$

Dynamically generated resonances at finite temperature $D_{s0}^{*}(2317)^{\pm}$ 10^{6} 150140 DK $D_s\eta$ 10^{5} 120T-matrix in sector (C, S, I) = (1, 1, 0) $|T_{i \to i}| \, [\mathrm{MeV}^0]$ - 100 T [MeV]80 10^{4} Experimental values - 60 $M = 2317.8 \pm 0.5 \,\mathrm{MeV}$ $\Gamma < 3.8 \,\mathrm{MeV}$ 40 10^{3} 10^{2} 2000 2100 2200 2300 24002500 2600 E [MeV]

Conclusions and Outlook

- We have introduced finite-temperature corrections to the description of the interaction of open charm mesons with light mesons in a self-consistent manner.
- The mass of the charmed $D^{(*)}$ and $D^{(*)}_s$ -mesons decrease monotonically with temperature (~ 10 - 13% for the $D^{(*)}_s$ and ~ 1%for the $D^{(*)}_s$ at T = 150 MeV) while they acquire a substantial width (~ 50 MeV for the $D^{(*)}$ and ~ 7 - 10 MeV for the $D^{(*)}_s$ at T = 150 MeV).
- The dynamically generated resonances shift their mass and get wider as temperature increases.

In the near future we aim to:

- Explore the hidden-charm sector.
- Study transport properties of heavy mesons at finite temperature.
- Extend our calculations to the bottom sector.
- Test our results against Lattice QCD calculations.