

Contribution ID: 110 Type: Talk

The charged Z_c and Z_b structures in a constituent quark model approach

Monday 2 September 2019 16:45 (20 minutes)

The nature of the recently discovered Z_c and Z_b structures is intriguing. On the one hand, in the charm sector, the $Z_c(3900)^\pm$ and $Z_c(4020)^\pm$ were discovered in the $\pi J/\psi$ and $D^*\bar{D}^{(*)}+h.c.$ invariant mass spectra. Their nature is puzzling due to their charge, which forces its minimal quark content to be $c\bar{c}u\bar{d}$ ($c\bar{c}d\bar{u}$). Additionally, their strong coupling to channels such as $\pi J/\psi$ and the closeness of their mass to $D^*\bar{D}^{(*)}$ -thresholds stimulates both a molecular interpretation or a coupled-channels threshold effect. On the other hand, in the bottom sector, the well-established $Z_b(10610)$ and $Z_b(10650)$ states couple to $B^{(*)}B^*$ -channels and are heavy enough to assume that they should contain a constituent $b\bar{b}$ -pair. Moreover, they are charged and hence they must also have another constituent light quark-antiquark pair, namely $u\bar{d}$ (Z_b^+). Their minimal structure would be then $b\bar{b}u\bar{d}$, which automatically qualifies them as an (exotic) bottomonium-like meson. Thus, in all cases, it is necessary to explore four-quark systems in order to understand their inner structure.

In this work we perform a coupled-channels calculation of the $I^G(J^{PC})=1^+(1^{+-})$ charm and bottom sectors in the framework of a constituent quark model [1,2] which satisfactorily describes a wide range of properties of (non-)conventional hadrons containing heavy quarks [3]. All the relevant channels are included for each sector: The $D^{(*)}\bar{D}^*+h.c.$, $\pi J/\psi$ and $\rho\eta_c$ channels for the Z_c [4] and $B^{(*)}B^*$ and $\Upsilon(nS)\pi$ (n=1,2,3) channels for the Z_b analysis. Results will be discussed.

- [1] J. Vijande, F. Fern\'andez and A. Valcarce, J. Phys. G31, 481 (2005).
- [2] J. Segovia, P. G. Ortega, D. R. Entem and F. Fern\'andez, Phys. Rev. D93, 074027 (2016).
- [3] P. G. Ortega, D. R. Entem and F. Fern\'andez, J. Phys. G40, 065107 (2013).
- [4] P. G. Ortega, J. Segovia, D. R. Entem and F. Fern\'andez, Eur. Phys. Jour. C 79:78 (2019).

Authors: Dr GARCIA ORTEGA, Pablo (University of Salamanca); Dr SEGOVIA, Jorge (Technische Universität München); RODRIGUEZ ENTEM, David (University of Salamanca); FERNANDEZ, Francisco (Universidad de Salamanca)

Presenter: Dr GARCIA ORTEGA, Pablo (University of Salamanca)

Session Classification: Parallel Session Monday: Hadrons and particles

Track Classification: Hadrons and Particles