<sup>19</sup>B isotope as a <sup>17</sup>B-n-n three-body system in the unitary limit

# **Jaume Carbonell**



#### In collaboration with E. Hiyama, R. Lazauskas and M. Marqués

European Few-Body Physics (EFB24) Guildford U.K., sep 2-6 (2019)

### **INTRODUCTION**

The S-wave neutron-Nucleon (n,p) interaction is attractive in all spin and isospin channels



The S=1 **np** state is the more attractive one, enough to **bind** the deuteron by B=2.22 MeV The S=0 **np** and **nn** states are not bound... but almost: have a "virtual state" close to threshold This spin-dependence accounts for a 20% difference in the attractive strength of NN interaction

Despite all  $V_{nN}$  are attractive - one could even expect several nA bound states ! - a low energy **n** scattering on a light nucleus soon (<sup>2</sup>H) behaves as if the  $V_{nA}$  was repulsive...

A n approaching a nucleus "feels" the others n's in the target and it doesn't like it ! (Pauli)

## **INTRODUCTION**

A dramatic consequence happens in 3n and 4n systems :  $H_{3n}$  has a (ground) bound state at about 1 MeV (5 MeV for  $H_{4n}$ )

... but in nature neither **3n** nor **4n** are bound

The lowest state of  $H_{3n}$  and  $H_{4n}$  is symmetric The first antisymmetric state is much higher in spectrum Everything happens <u>as if</u> there was a repulsion among n's: the "Pauli repulsion"

An interesting quantity to measure the repulsive/attractive character of  $V_{nA}$  is the scatt length

 $a_{n\Delta} = -f_{n\Delta}(E=0)$ 

For purely repulsive V, a>0

For purely attractive V, a<0...until a bound state appears

For a realistic interaction – mixing repulsive core with attractive parts – it will result as a balance of both tendencies





# **INTRODUCTION**

The evolution of  $a_{nA}$  when increasing **N** is summarized below

| ΖΝΑ   | Sym             | J    | а-         | a+      |
|-------|-----------------|------|------------|---------|
| 101   | р               | 1⁄2+ | -23.71     | +5.41 * |
| 0 1 1 | n               | 1⁄2+ | -18.59     | 1       |
| 1 1 2 | <sup>2</sup> H  | 1-   | +0.65*     | +6.35   |
| 2 1 3 | <sup>3</sup> He | 1⁄2+ | +6.6*-3.7i | +3.5    |
| 123   | <sup>3</sup> Н  | 1⁄2+ | +3.9       | +3.6    |
| 224   | <sup>4</sup> He | 0+   | +2.61      | /       |
| 336   | <sup>6</sup> Li | 1+   | +4.0       | +0.57   |
| 347   | <sup>7</sup> Li | 3/2- | +0.87      | -3.63   |
| 268   | <sup>8</sup> He | 0+   | -3.17      |         |
| 369   | <sup>9</sup> Li | 3/2- | -14        |         |

For A=n,p all channels are attractive, as expected (despite its sign, like for +5.41\*)

with A=2, the quartet state (S=3/2) starts being repulsive: Pauli repulsion dominates over **nN** attraction In A=7 an attractive channel appears again:  $^{7}$ Li (J=3/2<sup>-</sup>)



P-wave **n's** decrease the Pauli repulsion: 2  $p_{3/2}$  n's enough to balance into an "attractive" **V**<sub>nA</sub> Rm: previous repulsion were only in S-wave : P-wave were attractive, even resonant (n-<sup>3</sup>H,n-<sup>4</sup>He) The "attraction" persists in <sup>12</sup>Be,<sup>15</sup>B... **until something spectacular occurs.....** 

### **ONE OF THE MOST FASCINATING SYSTEMS IN NUCLEAR PHYSICS**

<sup>17</sup>B is a (strong) stable nucleus with  $J^{\pi}=3/2^{-}$  consisting on a sea of **12n** sourrounding **5p** 



The balance between attractive  $\pi$ -exchange between **n** and **17 Nucleon** and "Pauli repulsion" with the **12n**'s in <sup>17</sup>B is **so fine-tuned** that the scattering length is  $a_{n-17B} \sim -100$  fm

A low energy n scattering on <sup>17</sup>B "feels" a monster of geometrical size D~400 fm

The « low energy region » where n feels the monster is « very low » ...



Nevertheless the effect is huge, even with respect to what was considered huge untill now !

### **EXPERIMENTAL**

How do we know that this history is true ?

I. A first MSU measurement Spyrou et al. PLB683(2010)129 claimed the existence of a <sup>18</sup>B "virtual" (unbound) state and a n-<sup>17</sup>B a<sub>s</sub> <- 50 fm

#### **II. A recent RIKEN result**

observed this state in other channels (N. Orr's talk)





S.Leblond PhD (2015) M. Marques, Fukuoka 2018

The precise value of as it is not (yet) known, most probably <-100 fm

# THEORY

The large value of  $a_s$  indicates the existence of a "<sup>18</sup>B virtual state" very close to threshold It corresponds to a pole in the n-<sup>17</sup>B scattering amplitude **f(k)** at Im(k)<0, as in nn case

#### One of the most interesting virtual states in Nucl Physics:

- the scattering length **a**<sub>s</sub> is the **« nuclear chart record »** ....waiting for a final result !
- much larger than the highly celebrated  $a_{NN}$ =-24 fm, which, « controls the nuclear chart »

**S. König, Griesshammer, Hammer, van Kolck, Phys. Rev. Lett 118, 202501 (2017)** We argue that many features of the structure of nuclei emerge from a strictly perturbative expansion around the unitarity limit, where the two-nucleon S waves have bound states at zero energy"

- It is even comparable to atomic physics cases ! and a candidate to Efimov martyrology

### But this not all....

- <sup>19</sup>B is bound with a binding energy B in [0,0.53] MeV
- <sup>19</sup>B has several resonant states
- A series of <sup>20</sup>B,<sup>21</sup>B resonances were recently discovered S.Leblond et al, PRL121,262502(2018)

### All that gave a strong motivation to model <sup>19</sup>B as a <sup>17</sup>B-n-n 3-body cluster

- built wit 2 resonant scattering lengths (exemple of Borromean state)
- with possible extensions to <sup>17</sup>B-n-n-n and <sup>17</sup>B-n-n-n-n

First results in E. Hiyama, R. Lazauskas, M. Marqués, J. Carbonell, PRC100, 011603R (2019)



<sup>19</sup>R

### **MODELING THE n-17B SYSTEM**

#### **Ingredients:**

- Repulsive+Attractive part : V<sub>r</sub>,V<sub>a</sub>, μ
- Hard core radius : **n** cannot penetrate at r<**R** = size parameter **R** can be (matter radius  $R_m$ =3.0 or  $R_{LD}$ =1.2A<sup>1/3</sup>=3.0 fm) x 0.77
- Pion exchange (dominant at large r) µ=0.70 fm<sup>-1</sup>

Simplest ansatz

Equivalent to

 $V(r) = V_r \frac{\exp(-2\mu r)}{r} - V_a \frac{\exp(-\mu r)}{r}$  $V(r) = V_r \left(e^{-\mu r} - e^{-\mu R}\right) \frac{e^{-\mu r}}{r}$ 

μ and R being fixed, there is one single parameter V<sub>r</sub>

 $V_r$  is adjusted to reproduce the experimental value of  $a_s$ Since we are still waiting for it, we parametrize all in terms of  $a_s$ 



# **Determining a**<sub>s</sub> =f(**V**<sub>r</sub>)



Dashed lines correspond to  $a_s = -50$  (3864 MeV), -100 (4030), -150 (4090) fm with R=3.0

Singularity on right would corresponds to the (unphysical) bound <sup>18</sup>B state

Corresponding potentials saturates for  $a_s \sim -100$  fm

## MODELING <sup>19</sup>B as <sup>17</sup>B-n-n CLUSTER

Solve the 3-body problem (Faddeev+Gaussian) with  $V_{n-17B}$  and some realistic  $V_{nn}$ <sup>19</sup>B appears to be bound for a<sub>s</sub><-50 (the only parameter!) in a J<sup>π</sup>=3/2<sup>-</sup> state (L=0,S=0)



We used 2 different **nn** interactions and let  $V_{n-17B}$  act in S-wave (s. blue) or in all PW (s. black) The energy is always compatible with the experimental value E=-0.14+/-0.39 MeV

In the S-wave case we consider the unitary limit:  $a_s=a_{nn} \rightarrow -\infty$  (blue dashed) The result is still compatible with experimental value and constitutes a first illustration of this interesting limit in Nuclear Physics. Spatial probability amplitude  $|\Psi(r,R)|^2$  fixing a<sub>s</sub>=-100 fm



We also found two <sup>19</sup>B resonances: fixing  $a_s$ =-150 and using the S-wave model L=1 E<sub>1</sub>=0.24-0.31i MeV L=2 E<sub>2</sub>=1.02-1.22i MeV Their existence is in agreement with experimental findings J. Gibelin et al., Contribution to FB22, Caen july 2018, Springer Proc in Press

Very simple and successful model: local S-wave potential, no 3-body force, one single parameter The key of the succes is the double resonant character

#### Some refinements : the spin-spin dependence

<sup>17</sup>B being  $J^{\pi}=3/2^{-}$ , there are two different scattering lengths  $a_s$  corresponding to S=1,2. Assuming that the virtual state we adjusted was  $a_2$  there is no reason that  $a_1 = a_2$ 

Introduced a spin-spin dependence with different  $V_{n-17B}$  for each S, keeping the same form



There exists a critical value  $a_1^c$  above which <sup>17</sup>B binding disappears but this requires unphysical SS beaking  $V_r^{(1)}/V_r^{(2)}=2$ : results are stable even when varying R

### CONCLUSIONS

We present a local S-wave potential to describe the **n**-<sup>17</sup>**B** interaction and its virtual state

It depends on one parameter, adjusted to reproduce the huge n-17B scattering length ( $a_s$ <-50 fm)

Supplemented with the nn interaction we describe well the <sup>19</sup>B as a 3-body <sup>17</sup>B-**n**-**n** cluster:

- Its ground state (E=-0.14 +/- 0.40) MeV
- Two (L=1, and L=2) resonances

all in agreement with experimental findings.

The <sup>19</sup>B ground state is a « double resonant » state compatible with the unitary limit in both **nn** and  $n-^{17}B$  interactions

Despite the large values of the scattering length in both  $n^{-17}B$  and nn channels, we found that the appearence of the first Efimow excitation is excluded (would require  $a_s \sim$  few thousands fm)

The model can be extended to describe the recently found B isotopes as <sup>20</sup>B=<sup>17</sup>B-n-n-n <sup>21</sup>B=<sup>17</sup>B-n-n-n

with the methods used in studying <sup>5</sup>H (L.H.C., PLB 791, 335 (2019)

To better fix the model parameter it is mandatory to determine  $a_2$  and  $a_1$  as well as an accurate value of  $E(^{19}B)$