Short range nucleon correlations studied with electron and photon probes

Douglas MacGregor
The University of Glasgow

Short range nucleon correlations studied with electron and photon probes

- ◆ Introduction: Why short range correlations are important
- ightharpoonup Low energy (γ ,pN) experiments at Mainz
- High energy (e,e') experiments at Jefferson Lab
- Exclusive 3-nucleon knockout experiments
- Summary and conclusions

This talk will give a selective overview of investigations of few-body nucleon interactions using electromagnetic probes, with an emphasis on experiments carried out at Mainz and Jefferson Lab in the A2, CLAS and CLAS12 collaborations.

SRC and electromagnetic interactions

- Missing Spectroscopic Strength, Lapikas, NPA 553 (1993) 297c)
- 0.8 16O 31p 48Ca 90Zr 16O 31p 40Ca 208pb 12C VALENCE ORBITS 10' 10' TARGET MASS

- 1N knockout reactions
- ⇒ missing single particle strength observed in (e,e'p) reactions
- ⇒ Attributed to 2N correlations
- ⇒ Investigate with 2N knockout reactions
- ⇒ Residual nucleus is spectator
- \Rightarrow Look for strength at high p_m , corresponding to short NN separations

1N

2N

3N

2N knockout reactions, Subedi et al, Science 1476 (2008) 8

- ⇒ 3N correlations take this a stage further.
- ⇒ Energy and momentum given to three nucleons.
- ⇒ Expect effects at even higher p_m, higher excitation energies and even shorter distances
- ⇒ Expect magnitude of 3Neffects to be small (~10% 2N strength)
- ⇒ Enhance with kinematic selection
- ⇒ Information on nuclear physics at high nucleon densities (cold dense nuclear matter).

Laget calculations of 1N, 2N and 3N mechanisms, Niccolai et al, PRC 70 (2004) 064003

The MAMI Racetrack Microtron Facility at Mainz

A2 (Real Photon) Collaboration

RTM3

Glasgow Tagged Photon Spectrometer

- ♦ Photon Energy: $E_{\gamma} = E_{e} E_{e'}$
- ◆ Resolution: 2-4 MeV
- \bullet Circ. pol. γ from long. pol. e⁻ (up to 85%)
- igoplus Lin. pol. γ from diamond radiator (up to 70%)

Glasgow Tagged Photon Spectrometer I Anthony et al, NIM 301 (1991) 230

Linear Photon Polarisation from Coherent Bremsstrahlung

Stonehenge crystal alignment technique, K Livingston, NIM A 603 (2009) 205

Yield Enhancement

Polarisation

Photon-induced 2N-knockout reactions

At low E_m only 2 nucleons participate, but at higher missing energies contributions from 3N forces are possible.

¹²C(γ,pN) Reactions at Mainz

lacktriangle There are many possible contributions to two nucleon knockout e.g. Δ excitation, MEC, 2N SRC, 3N SRC, FSI etc.

- ◆ Experimentally separate processes can't be distinguished.

 Rather, selection of kinematics is used to enhance contribution of particular processes, prior to comparison with models.
- ightharpoonup 12C(γ ,pN) cross sections measured and compared with predictions of the Valencia Model (VM) Carrasco et al, NPA 570 (1994) 701
- ◆ The VM simplifies the nuclear many-body problem using a Fermi-gas model and a local density approximation. It incorporates all of the expected major mechanisms and calculates FSI, treating propagation of produced particles semi-classically.

Missing Energy spectra

Lamparter et al, ZPA 355 (1996) 1

- At low $E_{\gamma}^{12}C(\gamma,pn)$ has sharp peak at low $E_{m_{\gamma}}$ indicating only two nucleons involved
- igoplus At higher E_{γ} more complex processes involving more nucleons occur at higher E_{m}
- ♦The 12 C(γ,pp) reaction is a factor of ~30 weaker than 12 C(γ,pn) at low E_m
- ◆It has no discernible peak at low E_m, but has a broader distribution, indicating stronger FSI

Table 1. Calculated mean multiplicities of nucleons emitted in pn/pp events

$E_m/{\rm MeV}$	2N	2N + FSI	3N(+ FSI)	QFπ reabs.	QFπ emitted	Total
27 - 80	2.0/2.0	2.9/3.0	3.1/3.1	3.2/3.1	-/-	2.2/2.5
100 - 200	-/-	3.6/3.7	3.8/3.9	4.0/4.0	2.1/2.2	3.9/3.9
300 - 500	-/-	4.9/5.0	5.3/5.4	5.8/5.9	3.6/3.8	5.3/5.5
27 - 500	2.0/2.0	3.5/3.6	4.1/4.2	4.8/4.7	3.1/3.3	3.8/4.2

Interpretation

- ◆The ¹²C(γ,pn) E_m spectra agree reasonably in shape and magnitude with the VM predictions
- ◆The VM calculations give the correct shape for the 12 C(γ ,pp) E_m spectra but over-predict the strength by a factor 3.5
- ◆ 2N and 2N+FSI processes occur at low E_m
- igoplus 3N and 3N +FSI processes contribute to both channels at $E_m > 60$ MeV and $E_{\gamma} > 250$ MeV
- ◆ Relative contribution of
 3N and 3N + FSI is similar in
 both channels

Table 1. Calculated mean multiplicities of nucleons emitted in pn/pp events

$E_m/{\rm MeV}$	2N	2N + FSI	3N(+ FSI)	$QF\pi$ reabs.	$QF\pi$ emitted	Total
27 - 80	2.0/2.0	2.9/3.0	3.1/3.1	3.2/3.1	-/-	2.2/2.5
100 - 200	-/-	3.6/3.7	3.8/3.9	4.0/4.0	2.1/2.2	3.9/3.9
300 - 500	-/-	4.9/5.0	5.3/5.4	5.8/5.9	3.6/3.8	5.3/5.5
27 - 500	2.0/2.0	3.5/3.6	4.1/4.2	4.8/4.7	3.1/3.3	3.8/4.2

Variation of kinematics to enhance 3N contributions

Watts et al, PRC 62 (2000) 014616

Region I: back-to back,

suppresses 2N FSI

Region II: large opening angles

enhances 3N

Region III: extreme kinematics, both nucleons on same side of photon beam line,

enhances 3N

¹²C(γ,pn) Missing Energy

McGeorge et al, PRC 51 (1995) 1967

- ◆ E_m spectra modelled by folding together two (e,e'p) spectra, together with 7 MeV detector resolution
- Gives a good account of shape of E_m spectra for ${}^{12}C(\gamma,pn)$
- igoplus Strength of (1p)² and (1p)(1s) emission determined from number of (1p)² and (1p)(1s) pairs
- ¹²C(γ,pp) shape not so well reproduced, perhaps
 suggesting other processes, such as 2N+FSI are important
- For E_m < 40 MeV the 12 C(γ,pp) strength is <2% of the 12 C(γ,pn) cross section

Missing Momenta

◆ The initial pair momentum:

$$P_{pair} = -P_{\gamma} + P_{N1} + P_{N2}$$

- ◆ For ¹²C(γ,pn) spectrum shape agrees well with simple model folding momentum wavefunctions of two nucleons, for a range of E_m
- ightharpoonup For ¹²C(γ,pp) shapes also agree
- ◆ Confirms both 2-nucleon knockout reactions are described by 2N and 2N+FSI processes

Polarised Photons I

Franczuk et al, PLB 450 (1999) 332

◆ The photon asymmetry is defined by

$$\Sigma = \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}}$$

where σ_{\parallel} is the cross section parallel to the linearly polarised photon and σ_{\perp} is the perpendicular cross section

ightharpoonup For ¹²C(γ,pn) Σ for E_m < 40 MeV is negative, but not as strong as d(γ,pn)

- igoplus Comparison with a detailed Gent model, including π -meson in flight, π -seagull, Δ terms and SRC, averaged over our detector acceptance, is a poor fit to the data.
- ◆ Theoretical approximations limit these calculations to photon energies of a few hundred MeV
- ◆ There is a need for improved calculations, before detailed information on the strength of each contributing mechanism can be extracted.

Polarised Photons II

Powrie et al, PRC 64 (2001) 034602

◆ The photon asymmetry is defined by

$$\Sigma = \frac{\sigma_{\parallel} - \sigma_{\perp}}{\sigma_{\parallel} + \sigma_{\perp}}$$

where σ_{\parallel} is the cross section parallel to the linearly polarised photon and σ_{\perp} is the perpendicular cross section

- ightharpoonup For ¹²C(γ,pp) Σ shows a strong signal at low E_m
- ♦ This is stronger than for 12 C(γ,pn) indicating a distinct 2N process (FSI will reduce |Σ|)
- Confirms both 2-nucleon knockout reactions are described by 2N and 2N+FSI processes

Further studies of 2-nucleon knockout

MacGregor et al, PRL 80 (1998) 245

- Further studies of
 - i) the E_{γ} dependence of the **2N** cross section
 - ii) The 12 C(γ ,pp) to 12 C(γ ,pn) ratio
 - iii) The differential cross section

- \bullet Both 12 C(γ,pp) to 12 C(γ,pn) cross sections peak in the Δ -resonance region
- ightharpoonup The 12 C(γ,pp) / 12 C(γ,pn) ratio increases strongly with photon energy
- ◆ The angular distributions of both channels are very different and do not agree with Gent Model

Summary of low energy (γ,pN) reactions

- \bullet Both 12 C(γ,pn) and (γ,pp) reactions show clear evidence of 2N and 2N +FSI photon absorption at low E_m. (Similar results seen in other light nuclei: 4 He, 6 Li, 16 O)
- Clean reaction with the rest of the nucleus acting as a spectator
- lacklosh There is evidence of a strong Δ -excitation mechanism
- \bullet Comparison of angular distributions with models indicates significant MEC in (γ,pn)
- igoplus The strength of the (γ,pp) reaction is very much less than (γ,pn) and varies with photon energy, emission angle and missing energy
- \bullet Note that (γ,pp) has fewer MEC channels available and has no Tensor contribution
- lacktriangle The mechanisms have a strong angular variation, which differs between (γ,pn) and (γ,pp)
- ightharpoonup The reactions have a strong photon asymmetry Σ , which is stronger for (γ,pp) than (γ,pn)
- ♦ Exclusive (γ,pN) measurements require comparison with detailed calculations to identify specific contributions from SRC − Current comparisons are not sufficiently good enough for this
- ◆ 3N and other absorption processes occur at higher E_m

Inclusive (e,e') measurements (CLAS)

Egiyan et al, PRL 96 (2006) 082501

igoplus Inclusive electron scattering at **high Q**² and **high x**_B is able to transfer very high energies and momenta to the nucleus

◆ The cross section is sensitive to not just 2N but also 3N and higher correlations:

$$\sigma_A = A (a_1\sigma_1 + a_2\sigma_2/2 + a_3\sigma_3/3 + ...)$$

- \bullet σ_j is the cross section for electron interaction with a j-nucleon correlation and a_j is the ratio of the probabilities for a given nucleon to belong to correlation j in nucleus A to correlation j in a nucleus of j nucleons
- lacktriangle It is expected that interaction with 2N SRC will dominate for 1< x_B <2 and 3N SRC for 2< x_B <3
- igspace As cross sections drop rapidly with x_B , the **key** is *not* to look at the absolute cross sections, but to look at ratios for different nuclei, incorporating the elementary cross sections.

- ◆ Ratios of cross sections plotted for ⁴He/³He, ¹²C/³He and ⁵⁶Fe/³He
- ♦ In each cases plateaus are seen for $1.5 < x_B < 2.0$ and $2.3 < x_B < 2.6$, although statistics become poorer at high x_B
- lacktriangle The lower x_B region is an indication of the universality of 2N correlations and the higher x_B region is a signal of 3N correlations

High Momentum Protons and Neutrons

Hen et al, Science 436 (2014) 614, CLAS Duer et al, Nature 560 (2018) 617, CLAS

- ◆ SRC produce high momentum nucleons and the interaction between np pairs is stronger than between pp or nn pairs.
- ◆ How does this affect momentum distribution of protons and neutrons in heavy nuclei, such as Pb?
- ◆ Due to the neutron excess, on average each proton undegoes more SRC than the average neutron

- ◆In a dancing analogy, the protons get more dances, and a greater fraction end up with high momenta
- ◆ Confirmed by (e,e'p) and (e,e'n) cross section measurements measured in CLAS data mining experiments

◆ In Pb there are fewer high momentum neutrons than low momentum neutrons.

◆ In Pb there are fewer high momentum neutrons than high momentum protons

SRC possible connection to EMC?

Smookler et al, Nature 566 (2019) 354, CLAS

- Neutrons and protons are composite objects
- ◆ Deep Inelastic Scattering (DIS) probes internal quark structure
- ◆ DIS cross sections are larger in heavy nuclei than in light nuclei
- ♦ i.e. The distributions of quark properties is affected by the nuclear environment (EMC effect)
 - ◆ SRC enhance the high momentum components of nucleons
 - ◆ In particular, proton high momentum fraction is increased in in heavy nuclei
 - Could SRC affect the internal structure of nucleons?
 - ◆ Measure DIS and quasi-elastic cross sections simultaneously at CLAS

SRC possible connection to EMC?

Smookler et al, Nature 566 (2019) 354

- ◆ EMC effect is measured by slope of ratio of per nucleon F₂ structure function in nucleus A to F₂ in deuterium
- Write F₂^A in terms of interaction with uncorrelated protons and neutrons and with SRC pairs

$$F_2^{\rm A} = (Z - n_{\rm SRC}^{\rm A}) F_2^{\,p} + (N - n_{\rm SRC}^{\rm A}) F_2^{\,n} + n_{\rm SRC}^{\rm A} (F_2^{\,p*} + F_2^{\,n*})$$

- F_2^n is obtained from deuterium $F_2^d F_2^p n_{SRC}^d (\Delta F_2^p + \Delta F_2^n)$
- ◆ This allows a nucleus-independent ratio to be extracted

$$\frac{n_{\text{SRC}}^{\text{d}}(\Delta F_2^p + \Delta F_2^n)}{F_2^{\text{d}}} = \frac{\frac{F_2^{\text{A}}}{F_2^{\text{d}}} - (Z - N)\frac{F_2^p}{F_2^{\text{d}}} - N}{(A/2)a_2 - N}$$

◆ The universality of the response strongly suggests a connection between SRC and the EMC effect in nuclei

EMC Effect: Uncorrected slope of $(F_2^A/A) / (F_2^D/2)$ for range of nuclei

Universal ratio $n_{SRC}^{d} (\Delta F_2^p + \Delta F_2^n) / F_2^d$ for same range of nuclei

Summary of high energy (e,e') measurements

- ◆ Inclusive (e,e') experiments at high Q and high x_B transfer large quantities of energy and momentum to the nucleus
- ◆ Virtual photons are absorbed on single nucleons as well as correlated 2N pairs and 3N triples
- ◆ JLab data show strong evidence of 2N SRC and 3N SRC in both light and heavy nuclei
- ◆ Studies of the isospin dependence show that the neutron excess in heavy nuclei results in the protons having a larger high-momentum fraction than the neutrons
- ◆ Recent work has suggested a connection between SRC and the EMC effect

¹²C(γ,ppn) experiments at Mainz

Watts et al. PLB 553 (2003) 25

- ◆ 3-nucleon knockout is a natural reaction to investigate 3N forces
- ♦ Use VM to identify the processes
- → 3N and 3N+FSI are small part of cross section
- ♦ There are also contributions from 2N+FSI, N π + π ABS, etc
- ◆ 3N strength concentrated at low missing energy E_{3m} < 100 MeV
- ◆ 3N+FSI extends to higher E_{3m}

¹²C(γ,ppn) Kinematic selection to enhance 3N contribution

- ◆ Cut E_{3m} < 100 MeV enhances 3N (+FSI) contribution
- For $\gamma+N \rightarrow N+X$ process, followed by absorption of X on two more nucleons, $M_X^2 = (E_\gamma + m_N E_N)^2 (p_\gamma p_N)^2$
- Cut on invariant mass $(M_x/M_\pi)^2 < -1.5$ to suppress $N\pi + \pi ABS$
- ◆ Can find regions where 3N (+FSI) contributes ~40% of total strength.

¹²C(γ,ppp) reaction

Harty et al, PRC 57 (1998) 123

- Study of 3-nucleon final states in
 12C(γ,ppp) reaction
- ◆ E_m spectra to VM
- ◆ VM gets shapes right but not absolute magnitude
- ◆ 3N contribution is significant, but not the dominant process
- ♦ Pion production + reabsorption Nπ + π FSI is much larger

¹²C(γ,pd) Reaction at Mainz

McAllister et al, PRC 60 (1999) 0044610 Watts et al, PLB 647 (2007) 88

Reaction measured in back-to back kinematics in three settings covering forward, central and backward proton angles

Comparison of $^{12}C(\gamma,pd)$ and $^{3}He(\gamma,pd)$

The photon energy dependence of the $^{12}\text{C}(\gamma,\text{pd})$ cross section For E_m < 44 MeV is compared to that from $^3\text{He}(\gamma,\text{pd})$

Above 300 MeV both have a similar shape with no influence from the Δ -resonance.

There are further similarities between both reactions when the photon asymmetry is considered.

Black squares: $^{12}C(\gamma,pd)$ for E_m <40 MeV

Pink stars: ³He(γ,pd)

Belyaev et al, JETP Lett. 40 (1984) 1275

Recoil momentum distributions

- ◆ Data are split into two E_m regions E_m<44 MeV and 44<E_m<70 MeV
- ◆ Distributions are compared with a 3 nucleon plus spectator model folding together 3 Elton-Swift nucleon wavefunctions in a relative S state.
- ◆ Data agree surprisingly well with calculations and support interpretation of 3 active nucleons.
- ◆ However, this is <u>not</u> a theoretical calculation of **3N** processes

E_m<44 MeV

44<E_m<70 MeV

Summary and Conclusions I

- ◆ Electromagnetically induced 2- and 3-nucleon knockout reactions have contributions from many processes, including 2N, 2N+FSI, 3N, and 3N+FSI
- ightharpoonup 2N mechanisms occur at low E_m in both (γ,pn) and (γ,pp) reactions, with FSI extending strength to higher E_m
- ightharpoonup 2N mechanisms include Δ -excitation, MEC as well as SRC
- igoplus Kinematic selection can enhance the 2N contribution, but cannot experimentally separate SRC from Δ -excitation and MEC
- Strength of each component can only be deduced by comparison with theoretical models
- ◆ State-of-the-art calculations are needed to compare with each experiment, but have to be filtered through the detector acceptances

Summary and Conclusions II

- ◆ 3N interactions tend to take place at somewhat shorter ranges than 2N processes due to the involvement of an additional nucleon
- lacktriangle 3N and 3N+FSI occur in (γ ,pn) and (γ ,pp) reactions at high E_m
- ♦ 3N processes also occur at low E_m in 3-nucleon knockout reactions
- ◆ Kinematic selection can be used in each reaction to enhance the relative 3N contribution
- ◆ However, 3N and 3N+FSI processes generally remain a small part of the cross section
- ◆ Estimating the strength of each component requires comparison with detailed theoretical models

Summary and Conclusions III

- ◆ Inclusive (e,e') experiments at high Q and high x_B transfer large quantities of energy and momentum to the nucleus
- ◆ Virtual photons are absorbed on single nucleons as well as correlated 2N pairs and 3N triples
- ◆ JLab data show strong evidence of 2N SRC and 3N SRC in a range of light and heavy nuclei
- ◆ Studies of the isospin dependence show that the neutron excess in heavy nuclei results in the protons having a larger high-momentum fraction than the neutrons
- ◆ Recent work has also suggested a connection between SRC and the EMC effect

Acknowledgements

- ◆ The work reported in this talk is the output of efforts made by many colleagues, past and present, over a large number of years
- ◆ I would particularly like to thank those physicists working in the

A2 collaboration (Mainz) and CLAS/CLAS12 collaborations (Jefferson Lab)

