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Physics of isolated single donors

Experiments with large ensembles
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A hydrogen-like atom in a silicon chip: The Group 5 impurity

e-

P+

P looks like Si with 
– an extra +ve charge in the ion
– an extra electron orbiting

The electron-ion attraction is screened by er
The mass is reduced by m*
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Scaling from hydrogen to donor

At room temperature the valence electron is donated to conduction, but at 
low temperature it is bound to the ion, just like hydrogen
The Coulomb attraction is reduced by the dielectric constant, so the binding 
energy is very small, and the state radius is very large
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Rydberg spectrum of hydrogen

Hydrogen absorption spectrum 
seen superimposed on the 
emission from a very hot black 
body (a star)
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Rydberg spectrum of Si:P

First transmission spectrum of Si:P

Picus, Burstein and Henvis (1956)
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Lyman series spectrum of 28Si:P

The cleanest solid material in the universe?

Steger PhysRevB.79.205210 (2009)
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The THz Lyman lines are very sharp, so the lifetimes are very long
INCOHERENT dynamics – orbitals are long lived
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Stavrias et al, PRB (2017) 

NQ Vinh et al, PNAS (2008) 

Si:B

Saeedi et al, PRB (2018) 

NQ Vinh et al, PRX (2013) 

28Si:P

Hubers et al, PRB (2013) 
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The silicon environment is very clean, so the excitations are coherent
Coherent dynamics – orbitals can be controlled coherently

Greenland et al, (2010)

24 June 2010

Litvinenko 
et al (2017)

Chick et al (2017)
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Extreme diamagnetic response to magnetic fields 
Murdin et al, (2013) Nature Communications 4, 1469
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The donor THz dipole moments are very large
The absorption cross-sections of donors are very large (few nm2 for silicon, many nm2 for germanium)
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• The atomic unit of electric field
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Scaling down to the single/few atom limit

Achievements and problems
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Atomic Physics in the solid state – take advantage of microelectronics!

Electrical detection of donor Lyman lines through photoconductivity 
[=Photo-thermal Ionization Spectroscopy (PTIS)]

Donors have benefit over atoms in vacuum that they can be electrically read-out 
(with some violence) without the atom being kicked to kingdom come!
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Scaling down detection/readout to single atoms
Single-Shot Readout and Relaxation of Singlet and Triplet States in Exchange-Coupled 31P Electron Spins in Silicon 
Andrew S. Dzurak, and Andrea Morello group UNSW
Phys. Rev. Lett. 112, 236801 (2014)
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Single atom P positioning with H lithography in Si [collaborators at UCL]
SR Schofield et al, Nature Commun 4, 1649 (2013) 

Donors can be placed 
with (almost) atomic 

precision
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Importance of Si:P QIP

Stoneham-Fisher-Greenland 
scheme: THz gated entanglement/ 
control/gating between qubits

Kane/Hollenberg scheme: THz 
induced spin-to-charge conversion 
between qubit and SET donors

A. M. Stoneham et al, J. Phys. C, 
15, L447, 2003.

qubitA:1s(A1) 

control:1s(A1) 

qubitB:1s(A1) 

Continuum 

2p 

e.g. Bi e.g. P 

L.C.L.Hollenberg et al 
Phys.Rev.B 69, 233301 (2004) 
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Large scale silicon quantum computer architectures (I)
Some donor quantum computer architectures need very precise placement of atoms (few nm here)

Melbourne/U NSW (Simmons group) [C. D. Hill et al 
Science Advances 2015: 1, e1500707]
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SIMPLE Single Ion Multispecies Positionig at Low Energy

• SIMPLE is a high precision single ion implantation tool specifically targeted 
at supporting solid-state quantum technologies.

• The aim is for the tool to be a scalable and repeatable manufacturing 
method for arrays of qubits for quantum processors.

• This is a system developed around a liquid metal ion gun (LMIG) designed 
to produce sub 20nm spatial resolution, and fire with absolute certainty of 
the number of ions implanted.

Ion beam implantation – Surrey Ion Beam Centre, Ionoptika Ltd and Manchester

• Species available for Implantation: Au, Ge, Bi. 
In future, available species: Se, Si, B, In

• The tool has measured beam spotsizes below 
20nm – which along with implant straggle, 
determine the uncertainty of ion positioning. 

• Ions can be implanted with energies ranging 
from 15-25keV. 
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How do we see what we have made?
Scanning probe microscopy

An AFM tip as a microwave antenna 
Scanning Microwave microscopy (SMM)

An AFM tip as a near-field scatterer
Scattering-Scanning Near-field Optical Microscopy (s-SNOM)
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SMM measurements of buried P resonators and ribbons/wires
G. Gramse, et al Science Advances (Jun 2017) 10.1126/sciadv.1602586

After 
lithography and 

15nm Si 
encapsulation. 
P triangle has 
incorporated 

phosphorus;  H 
does not 
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Scale bar = 

SMM is good for large conductors, but NOT single qubit level

http://advances.sciencemag.org/content/3/6/e1602586
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Single InAs quantum dots have been observed with THz SNOM
The dipole moment of the s-p inter-sub-level transition in c.b. of a dot is about the same as for a donor

85meV = 14.6µm 91meV = 13.6µm

topo

50meV 110meV
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Low temperature (10K) THz scanning SNOM Neaspec at Surrey

• 8 um QCL light source
• Base temperature 5.5K
• Best resolution so far 30nm (tip 

dependent)
• Interferometric detection 

(sample/tip is one arm of 
Michelson) gives amplitude and 
phase (related to real/imaginary 
parts)

Test with Si/SiO2 grid with 
dust speck

Note different contrast  with 
topography/amplitude/phase 
indicates real SNOM effect topology amplitude phase
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Outlook

• Silicon donors have interesting (extreme) properties (giant diamagnetism,
giant non-linearities etc)

• Silicon donors are promising candidates for qubits
• Donors can be placed in designer clusters, so the interactions can be 

controlled
• Mid-IR to THz transitions control the orbital motion (and provide a means to 

control interactions between qubits)
• SNOM provides a way to characterize qubit sample structures
• The combination of THz pulses with SNOM might provide a way to address 

single qubits
• A route to designer few-body physics problems


