Mesons with charm and bottom quarks in a covariant quark model

Alfred Stadler

University of Évora and CFTP—IST Lisbon

Collaborators:

Sofia Leitão

Teresa Peña

Elmar Biernat

CFTP—IST Lisbon

Franz Gross

Jefferson Lab

Motivation for studying meson structure

- ▶ Meson properties are measured at many experimental facilities: LHC, BABAR, Belle, BES III, GlueX (JLab); in the future PANDA (GSI)
- ▶ Trying to find exotic mesons (hybrids, glueballs, ... but maybe $q\bar{q}$ in disguise?)
- \blacktriangleright We also need to understand "conventional" $q\bar{q}$ -mesons in more detail
- Study production mechanisms, transition form factors
 (e.g., important for hadronic contributions to light-by-light scattering)

Theory: a very large amount of work has already been done on meson structure

Many different approaches:

- Lattice QCD
- Bethe-Salpeter/Dyson-Schwinger Equations
- Relativistic Quantum Mechanics (point form, front form, instant form)
- BLFQ (Basis Light-Front Quantization)
- Chiral quark models
- Constrained dynamics two-body Dirac equation
- Relativized Schrödinger equation, ...

Our approach

CST - Covariant Spectator Theory

Main goals and features of our approach:

- Find $q \bar{q}$ interaction that can be used in all mesons (unified model)
- Relativistic covariance (work in Minkowski space)
- Confinement through a confining interaction kernel, which should reduce to linear+Coulomb in the nonrelativistic limit
- Learn about the Lorentz structure of the confining interaction
- Quark masses are dynamic: self-interaction should be consistent with $q\bar{q}$ interaction
- Chiral symmetry: massless pion in chiral limit, satisfy the axialvector Ward-Takahashi identity

Huge mass variation: from pions (~0.14 GeV) to bottomonium (> 10 GeV)

CST equation for two-body bound states

Bethe-Salpeter equation for $q \bar{q}$ bound-state with mass μ

Integration over relative energy k_0 :

- Keep only pole contributions from constituent particle propagators
- ▶ Poles from particle exchanges appear in higher-order kernels (usually neglected — tend to cancel)
- ▶ Reduction to 3D loop integrations, but covariant
- Correct one-body limit

If bound-state mass μ is small: both poles are close together (both important)

Symmetrize pole contributions from both half planes: charge conjugation symmetry

BS vertex (approx.)

CST vertices

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation to get the vertex function for arbitrary four-momenta.

CST equations

Closed set of equations when external legs are systematically placed on-shell

Solutions: bound state masses μ and corresponding vertex functions Γ

One-channel spectator equation (1CSE):

- ► Particularly appropriate for unequal masses
- ► Numerical solutions easier (fewer singularities)
- ▶ But not charge-conjugation symmetric

Two-channel spectator equation (2CSE):

- ► Restores charge-conjugation symmetry
- ► Additional singularities in the kernel

Four-channel spectator equation (4CSE):

► Necessary for light bound states (pion!)

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).

The covariant kernel

Our kernel:
$$\mathcal{V}(p,k;P) = \underbrace{\frac{3}{4}\mathbf{F}_1 \cdot \mathbf{F}_2}_{K} \underbrace{\sum_{K} V_K(p,k;P)}_{K} \underbrace{\Theta_1^{K(\mu)} \otimes \Theta_{2(\mu)}^{K}}_{Lorentz \ struct \ dependence}$$

$$p = \begin{cases} F_1^a \Theta_1^{K(\mu)} \\ X \end{cases}$$

$$F_a = rac{1}{2} \lambda_a$$
 color SU(3) generators

dependence

Lorentz structure

$$\Theta_i^{K(\mu)} = \mathbf{1}_i, \gamma_i^5, \gamma_i^{\mu}$$

► Confining interaction: Lorentz (scalar + pseudoscalar) mixed with vector

Coupling strength σ , mixing parameter y

$$y = 0$$
 pure S+PS

$$y=1$$
 pure V

for correct nonrelativistic limit

$$\mathcal{V}_{\mathcal{L}}(p,k;P) = \left[(1-y) \left(\mathbf{1}_1 \otimes \mathbf{1}_2 + \gamma_1^5 \otimes \gamma_2^5 \right) - y \gamma_1^{\mu} \otimes \gamma_{\mu 2} \right] V_{\mathcal{L}}(p,k;P)$$

→ E.P. Biernat et al., PRD **90**, 096008 (2014)

equal weight (constraint from chiral symmetry)

▶ One-gluon exchange with constant coupling strength α_s Lorentz vector + Constant interaction (in r-space) with strength C

$$\mathcal{V}_{\text{OGE}}(p, k; P) + \mathcal{V}_{\text{C}}(p, k; P) = -\gamma_1^{\mu} \otimes \gamma_{2\mu} [V_{\text{OGE}}(p, k; P) + V_{\text{C}}(p, k; P)]$$

► Nonrelativistic limit: Cornell type potential (for any value of u)

$$V(r) = \sigma r - C - \frac{\alpha_s}{r}$$

Covariant confining kernel in CST

Nonrelativistic linear potential in momentum space: FT of $\tilde{V}_L(r) = \sigma r$

$$\langle V_L \phi \rangle(\mathbf{p}) = \int \frac{d^3k}{(2\pi)^3} V_L(\mathbf{p} - \mathbf{k}) \phi(\mathbf{k}) = -8\pi\sigma \int \frac{d^3k}{(2\pi)^3} \frac{\phi(\mathbf{k}) - \phi(\mathbf{p})}{(\mathbf{p} - \mathbf{k})^4}$$
 Cauchy principal value singularity any regular function highly singular

► Covariant generalization: $\mathbf{q}^2 \rightarrow -q^2$

initial state: either quark or antiquark onshell

This leads to a kernel that acts like

$$\begin{cases} \langle V_L \phi \rangle(p) = \int \frac{d^3k}{(2\pi)^3} \frac{m}{E_k} V_L(p, \hat{k}) \phi(\hat{k}) = -8\pi\sigma \int \frac{d^3k}{(2\pi)^3} \frac{m}{E_k} \frac{\phi(\hat{k}) - \phi(\hat{k}_R)}{(p - \hat{k})^4} \\ \text{on mass shear of } \hat{k} = (E_k, \mathbf{k})$$

on mass shell

Complication: Singularity not only when k = p $\hat{k}_R = (E_{k_R}, \mathbf{k}_R)$ $\mathbf{k}_R = \mathbf{k}_R(p_0, \mathbf{p})$ value of k at which kernel becomes singular

▶ Does it still confine?

More details: Savkli, Gross, PRC 63, 035208 (2001)

The One-Channel Spectator Equation (1CSE)

We solve the 1CSE for heavy and heavy-light systems

- ► Should work well for bound states with at least one heavy quark
- ► Much easier to solve numerically than 2CSE or 4CSE
- C-parity splitting small in heavy quarkonia
- ► For now with constant constituent quark masses (quark self-energies will be included later)

$$E_{ik} = \sqrt{m_i^2 + \mathbf{k}^2}$$

$$\Gamma(\hat{p}_1, p_2) = -\int \frac{d^3k}{(2\pi)^3} \frac{m_1}{E_{1k}} \sum_{K} V_K(\hat{p}_1, \hat{k}_1) \Theta_1^{K(\mu)} \frac{m_1 + \hat{k}_1}{2m_1} \Gamma(\hat{k}_1, k_2) \frac{m_2 + \hat{k}_2}{m_2^2 - k_2^2 - i\epsilon} \Theta_{2(\mu)}^K$$

► Practical solution: solve equation for relativistic wave functions in a basis of eigenstates of total orbital angular momentum *L* and of total spin *S* (not necessary, but useful for spectroscopic identification of solutions)

Relativistic components

$$J^P = 0^\pm \qquad \int_0^\infty dp \, p^2 \left[\psi_S^2(p) + \psi_P^2(p) \right] = 1 \qquad \text{Normalization of radial wave functions} \\ J^P = 1^\pm \qquad \int_0^\infty dp \, p^2 \left[\psi_S^2(p) + \psi_D^2(p) + \psi_{P_s}^2(p) + \psi_{P_t}^2(p) \right] = 1$$

(No problem with parity: relativistic components also have opposite intrinsic parity factor!)

Data sets used in least-square fits of meson masses

				Da	tas	set
	State	$J^{P(C)}$	Mass (MeV)	S1	S2	S3
	$\Upsilon(4S)$	1	10579.4 ± 1.2		•	•
	$\chi_{b1}(3P)$	1 ⁺⁺	10512.1 ± 2.3			•
	$\Upsilon(3S)$	1	10355.2 ± 0.5		•	•
	$\eta_b(3S)$	0_{-+}	10337			
	$h_b(2P)$	1 ⁺⁻	10259.8 ± 1.2			•
	$\chi_{b1}(2P)$	1 ⁺⁺	102001102012220100			•
$b\overline{b}$	$\chi_{b0}(2P)$	0_{++}	$10232.5 \pm 0.4 \pm 0.5$		•	•
	$\Upsilon(1D)$	1	10155			
	$\Upsilon(2S)$	1	10023.26 ± 0.31		•	•
	$\eta_b(2S)$	0_{-+}	9999 ± 4	•	•	•
	100(11)	1+-	9899.3 ± 0.8			•
	$\chi_{b1}(1P)$	1++	$9892.78 \pm 0.26 \pm 0.31$			•
	$\chi_{b0}(1P)$	0_{++}	$9859.44 \pm 0.42 \pm 0.31$		•	•
	$\Upsilon(1S)$	1	9460.30 ± 0.26		•	•
	$\eta_b(1S)$	0-+	9399.0 ± 2.3	•	•	•
$b\overline{c}$	$B_c(2S)^{\pm}$	0_{-}	6842 ± 6			•
	B_c^+	0-	6275.1 ± 1.0	•	•	•
$b\overline{s}$	$B_{s1}(5830)$	1+	5828.63 ± 0.27			•
$b\overline{q}$	$B_1(5721)^{+,0}$	1+	5725.85 ± 1.3			•
$b\overline{s}$ $\{$	B_s^* B_s^0	1	5415.8 ± 1.5		•	•
Ĺ		0_{-}	5366.82 ± 0.22	•	•	•
$b\overline{q} \big\{$	$B^* \atop B^{\pm,0}$	1	5324.65 ± 0.25		•	•
, d	$B^{\pm,0}$	0_	5279.45	•	•	•

				Data	set
	State	$J^{P(C)}$	Mass (MeV)	S1 S2	2 S3
	X(3915)	0++	3918.4±1.9	•	•
	$\psi(3770)$	1	3773.13 ± 0.35	•	•
	$\psi(2S)$	1	3686.097 ± 0.010	•	•
	$\eta_c(2S)$	0_{-+}	3639.2 ± 1.2	• •	•
$c\overline{c}$	$h_c(1P)$	1 ⁺⁻	3525.38 ± 0.11		•
	$\chi_{c1}(1P)$	1++	3510.66 ± 0.07		•
	$\chi_{c0}(1P)$	0_{++}	3414.75 ± 0.31	•	•
	$J/\Psi(1S)$	1	3096.900 ± 0.006	•	•
	$\eta_c(1S)$	0_{-+}	2983.4 ± 0.5	• •	•
$a = \int$	$\frac{D_{s1}(2536)^{\pm}}{D_{s1}(2460)^{\pm}}$	1+	2535.10 ± 0.06		•
cs	$D_{s1}(2460)^{\pm}$	1+	2459.5 ± 0.6		•
$c\overline{a}$	$D_1(2420)^{\pm,0}$ $D_0^*(2400)^0$	1 ⁺	2421.4		•
cq	$D_0^*(2400)^0$	0^+	2318 ± 29	•	•
$c\overline{s}$ $\{$	$D_{s0}^{*}(2317)^{\pm}$ $D_{s}^{*\pm}$	0^+	2317.7 ± 0.6	•	•
		1	2112.1 ± 0.4	•	•
	$D^*(2007)^0$	1	2008.62		•
$c\overline{s}$		0_	1968.27 ± 0.10	• •	•
$c\overline{q}$	$D^{\pm,0}$	0_	1867.23	• •	•

S1: 9 PS mesons

S2: 25 PS+V+S mesons

S3: 39 PS+V+S+AV mesons

q represents a light quark (u or d)

We use $m_u = m_d \equiv m_q$

Global fits with fixed quark masses and y=0

S. Leitão, A. S., M. T. Peña, E. Biernat, Phys. Lett. B 764 (2017) 38

First step: we perform global fits to the heavy + heavy-light meson spectrum

Adjustable model parameters:

 σ

 α_s

C

Model parameters not adjusted in the fits:

Constituent quark masses (in GeV)

 $m_{b}=4.892, m_{c}=1.600, m_{s}=0.448, m_{q}=0.346$

 $\Lambda = 2m_1$

Scalar + pseudoscalar confinement

y = 0

Linear and OGE kernels need to be regularized

We chose Pauli-Villars regularizations with parameter

- ► Model M0_{S1}: fitted to 9 pseudoscalar meson masses only
- ► Model M0_{S2}: fitted to 25 pseudoscalar, vector, and scalar meson masses

(Previously called models P1 and PSV1)

Global fits with fixed quark masses and scalar confinement (y=0)

Global fits with fixed quark masses and y=0

The results of the two fits are remarkably similar!

rms differences to experimental masses (set S3):

Model	$\sigma [\text{GeV}^2]$	$lpha_s$	C [GeV]	_	Model	$\Delta_{\rm rms} \ [{ m GeV}]$
$\overline{\mathrm{M0}_{S1}}$	0.2493	0.3643	0.3491		$M0_{S1}$	0.037
$M0_{S2}$	0.2247	0.3614	0.3377		$M0_{S2}$	0.036

► Kernel parameters are already well determined through pseudoscalar states (JP = 0-)

$$\langle 0^- | \mathbf{L} \cdot \mathbf{S} | 0^- \rangle = 0$$

$$\langle 0^- | S_{12} | 0^- \rangle = 0$$

$$\langle 0^- | \mathbf{S}_1 \cdot \mathbf{S}_2 | 0^- \rangle = -3/4$$

Spin-spin force acts in singlet only

► Good test for a covariant kernel:

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate spin-spin from central force.

But they should be determined through covariance.

Model M0_{S1} indeed predicts spin-dependent forces correctly!

Leitão, AS, Peña, Biernat, Phys. Lett. B 764 (2017) 38

Fits with variable quark masses and confinement (S+PS)-V mixing y

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

Model S	Symbol	$\sigma [\text{GeV}^2]$	$lpha_s$	$C [\mathrm{GeV}]$	y	m_b [GeV]	m_c [GeV]	m_s [GeV]	m_q [GeV]	N	$\delta_{\rm rms} \; [{\rm GeV}]$	$\Delta_{\rm rms} \; [{\rm GeV}]$
$M0_{S1}$		0.2493	0.3643	0.3491	0.0000	4.892	1.600	0.4478	0.3455	9	0.017	0.037
$\mathrm{M1}_{\mathrm{S1}}$	\bigcirc	0.2235	0.3941	0.0591	0.0000	4.768	1.398	0.2547	0.1230	9	0.006	0.041
$M0_{S2}$		0.2247	0.3614	0.3377	0.0000	4.892	1.600	0.4478	0.3455	25	0.028	0.036
$\mathrm{M1}_{\mathrm{S2}}$		0.1893	0.4126	0.1085	0.2537	4.825	1.470	0.2349	0.1000	25	0.022	0.033
$\overline{\mathrm{M1}_{\mathrm{S2'}}}$	Δ	0.2017	0.4013	0.1311	0.2677	4.822	1.464	0.2365	0.1000	24	0.018	0.033
$\sim \sqrt{M1_{S3}}$		0.2022	0.4129	0.2145	0.2002	4.875	1.553	0.3679	0.2493	39	0.030	0.030
100 M		0.2058	0.4172	0.2821	0.0000	4.917	1.624	0.4616	0.3514	39	0.031	0.031

include AV states in fit

Parameters in **bold** were not varied during the fit

y held fixed, other parameters refitted

- Quality of fits not much improved
- ► Best model M1_{S3} has y=0.20, but minimum is very shallow

y and quark masses are not much constrained by the mass spectrum.

Mass spectra of heavy and heavy-light mesons

Bottomonium ground-state wave functions

Calculated with model M1s3

Relativistic wave function components are very small

Radial excitations in vector bottomonium

Wave functions of excited states look reasonable

Importance of relativistic components

Ground-state wave functions of model M1_{S3}.

Importance of relativistic components

Ground-state wave functions of model M1_{S3}.

Regularization of the kernel

Loop integration needs to be regularized

- First models used Pauli-Villars regularization, with $\Lambda=2m_1$ (for simplicity) (equivalent to rational form factor with $n_A=1$ and $n_G=1$)
- ► Generalize to other form factors (higher powers or exponential form)
 This is needed for convergence in calculations of decays constants

Linear

 $V_{A\Lambda}(p,k) = -\frac{8\pi\sigma}{q^4} \left(\frac{\Lambda^4}{q^4 + \Lambda^4}\right)^{n_A}$

OGE

$$V_{G\Lambda}(p,k) = \frac{4\pi\alpha_s}{m_g^2 - q^2} \left(\frac{\Lambda^2 - m_g^2}{\Lambda^2 - q^2}\right)^{n_G}$$

Exponential:
$$V_{A\Lambda}(p,k) = -\frac{8\pi\sigma}{q^4}e^{-q^4/\Lambda^4}$$

Rational:

$$V_{G\Lambda}(p,k) = \frac{4\pi\alpha_s}{m_g^2 - q^2} e^{-q^4/\Lambda^4}$$

(we used mostly $m_g = 0$)

- ▶ We considered models with $(n_A, n_G) = (1,3)$ or (2,5), or with exponential form
- ▶ We use global model parameters. But how to scale Λ ? Is $\Lambda \propto m_1$ really the best choice?

Scaling of the cutoff Λ

Test different scaling rules for Λ with the quark masses in bottomonium and charmonium:

$$\Lambda = \Lambda_s m_1^{1/2}$$
 $\Lambda = \Lambda_s m_1^{1/3}$ $\Lambda = \Lambda_s m_1^{1/3}$ $\Lambda = \Lambda_s m_1^0$ (independent of m_1)

 $\delta_{\rm rms}$ (GeV) of fits to 22 experimental $b\bar{b}$ and $c\bar{c}$ states

Form factor	$\Lambda = \Lambda_s m_1$	$\Lambda = \Lambda_s m_1^{1/2}$	$\Lambda = \Lambda_s m_1^{1/3}$	$\Lambda = \Lambda_s m_1^0$
$n_A = 1, n_G = 3$	0.0287	0.0184	0.0148	0.0252
$n_A = 2, n_G = 5$	0.0347	0.0166	0.0148	0.0221
Exponential	0.0216	0.0146	0.0126	0.0197

For comparison: M1s3 had $\delta_{\rm rms} = 0.0247~{\rm GeV}$

- \blacktriangleright Clearly, a linear scaling of Λ with m_1 is not the best choice to reproduce the spectrum
- ► A scaling $\Lambda \propto m_1^{1/3}$ works best
- ▶ This improved scaling leads to excellent combined fits to heavy quarkonia (essentially as good as fits to $b\bar{b}$ and $c\bar{c}$ separately)

Heavy quarkonium decay constants

Very precise measurements for some charmonium and bottomonium V and PS states (no data for S and AV)

Nonrelativistic: depend on $\Psi(r=0)$ (\rightarrow only S-waves contribute)

Relativistic: all partial waves can contribute

Pseudoscalar mesons

$$f_P = \frac{1}{\pi} \sqrt{\frac{N_c}{2\mu_P}} \int_0^\infty dk \, k^2 \sqrt{\left(1 + \frac{m_1}{E_{1k}}\right) \left(1 + \frac{m_2}{E_{2k}}\right)} \left[(1 - \tilde{k}_1 \tilde{k}_2) \psi_s(k) + (\tilde{k}_1 + \tilde{k}_2) \psi_p(k) \right]$$

Vector mesons

$$f_{V} = \frac{1}{\pi} \sqrt{\frac{N_{c}}{2\mu_{V}}} \int_{0}^{\infty} dk \, k^{2} \sqrt{\left(1 + \frac{m_{1}}{E_{1k}}\right) \left(1 + \frac{m_{2}}{E_{2k}}\right)} \left[(1 + \frac{1}{3}\tilde{k}_{1}\tilde{k}_{2})\psi_{s}(k) - \frac{2\sqrt{2}}{3}\tilde{k}_{1}\tilde{k}_{2}\psi_{d}(k) + \frac{1}{\sqrt{3}}(\tilde{k}_{1} + \tilde{k}_{2})\psi_{p_{s}}(k) + \sqrt{\frac{2}{3}}(\tilde{k}_{2} - \tilde{k}_{1})\psi_{p_{t}}(k) \right]$$

$$\tilde{k}_{i} \equiv \frac{|\mathbf{k}_{i}|}{E_{i,1} + m_{i}}$$

Quarkonium decay constants (preliminary results)

Model $M_{Q\bar{Q}}\Lambda_{OGE}$: $n_A = 1, n_G = 3, \Lambda = 1.5m_1$ $\delta_{\rm rms} = 0.048~{\rm GeV}$ **CST** $J^{P(C)}$ BLFQ $\mid M_{O\bar{O}} \Lambda_{OGE}$ (this work) Quark content n Meson **PDG** Lattice DSE I DSE II Very difficult to get a 667^{+6}_{-6} 773 $1 \eta_b(1S)$ 756 795 589 good fit! (especially in $c\bar{c}$) 0^{-+} $2 \eta_b(2S)$ 419(8)285427 596 0^{-+} $\eta_b(3S)$ 534(57)333 331 536 CST fits indicate trade-off 4 $\eta_b(4S)$ 0_{-+} 40(15)503 between descriptions of 649^{+31}_{-31} $1 \Upsilon(1S)$ 1-- 689^{+5}_{-5} 689 707 703 mass spectrum and decay constants. 481^{+39}_{-39} 467(17) 479_{-4}^{+4} $b\bar{b}$ $2 \Upsilon(2S)$ 1--393 484 573 $3 1^3 D_1$ 1--41(7)371(2)4.2 26 414_{-4}^{+4} 4 $\Upsilon(3S)$ 1--9(5)366 536 $5 \ 2^3 D_1$ 1--165(50) -38 328^{+17}_{-18} 1--6 $\Upsilon(4S)$ 20(15)518 Lattice: HPOCD Collaboration. Phys. Rev. 330^{+13}_{-13} 393^{+9}_{-9} 0_{-+} $1 \eta_c(1S)$ 401 378 368 547 D 86, 074503 (2012); Phys. Rev. D 82, 114504 (2010); Phys. Rev. D 86, 094501 211^{+35}_{-42} 0^{-+} $2 \eta_c(2S)$ 244(12)82 280 461 (2012); Phys. Rev. D **91**, 074514 (2015). 0^{-+} $\eta_c(3S)$ 145(145)206 417 DSE: A. Krassnigg, M. Gomez-Rocha, and T. Hilger, Journal of Physics: Conference $4 \eta_c(4S)$ 0^{-+} Series **742**, 012032 (2016). $c\bar{c}$ 87 387 407^{+5}_{-5} 405^{+6}_{-6} 1-- $1 J/\psi$ 450 411 404 525 BLFO: Y. Li, P. Maris, and J. P. Vary, Phys. Rev. D **96**, 016022 (2017). 1___ 290^{+2}_{-2} $\psi(2S)$ 30(3)155 290 531 97.7^{+3}_{-3} $3 \psi(3770) 1^{--}$ 0.9 118(91)4598

Spectrum of mesons with b-quarks

Quark content	Meson	$J^{P(C)}$	Exp. Mass	$M1_{S3}$	$M_{S3}\Lambda_{OGE}$	${ m M}_{Qar Q}\Lambda_{ m OGE}$
	$\eta_b(1S)$	0_{-+}	9399.0 ± 2.3	9363	9402	9474
	$\eta_b(2S)$	0_{-+}	9999 ± 4	9963	9991	9992
	$\eta_b(3S)$	0_{-+}	10337	10321	10356	10346
	$\Upsilon(1S)$	1	9460.30 ± 0.26	9472	9460	9505
	$\Upsilon(2S)$	1	10023.26 ± 0.31	10009	10015	10008
	$\Upsilon(1D)$?	1	10155	10150	10134	10096
	$\Upsilon(3S)$	1	10355.2 ± 0.5	10356	10373	10357
$bar{b}$	$\Upsilon(4S)$	1	10579.4 ± 1.2	10647	10668	10650
	$\chi_{b0}(1P)$	0^{++}	$9859.44 \pm 0.42 \pm 0.31$	9853	9838	9834
	$\chi_{b0}(2P)$	0^{++}	$10232.5 \pm 0.4 \pm 0.5$	10219	10227	10211
	$\chi_{b1}(1P)$	1++	$9892.78 \pm 0.26 \pm 0.31$	9894	9871	9850
	$h_b(1P)$	1^{+-}	9899.3 ± 0.8	9901	9876	9852
	$\chi_{b1}(2P)$	1++	$10255.46 \pm 0.22 \pm 0.50$	10250	10247	10221
	$h_b(2P)$	1^{+-}	10259.8 ± 1.2	10256	10251	10222
	$\frac{\chi_{b1}(3P)}{B_c^+}$	1^{++}	10512.1 ± 2.3	10543	10553	10527
$b\bar{c}$	B_c^+	0-	6275.1 ± 1.0	6284	6264	_
	$\frac{B_c(2S)^{\pm}}{B_s^0}$	0^{-}	6842 ± 6	6846	6845	_
	B_s^0	0-	5366.82 ± 0.22	5366	5344	_
$bar{s}$	B_s^*	1-	5415.8 ± 1.5	5452	5423	_
	$B_{s1}(5830)$ $B^{\pm,0}$	1^+	5828.63 ± 0.27	5787	5767	_
	$B^{\pm,0}$	0-	5279.45	5292	5274	_
$bar{q}$	B^*	1	5324.65 ± 0.25	5373	5352	_
	$B_1(5721)^{+,0}$	1^+	5725.85 ± 1.3	5703	5690	_

 $\mathrm{Model}\ \mathrm{M}_{Q\bar{Q}}\Lambda_{\mathrm{OGE}}\!{:}\ \delta_{\mathrm{rms}} = 0.048\ \mathrm{GeV}$

Spectrum of mesons with c-quarks

Quark content	Meson	$J^{P(C)}$	Exp. Mass	$M1_{S3}$	$M_{S3}\Lambda_{OGE}$	${ m M}_{Qar Q}\Lambda_{ m OGE}$
	$\eta_c(1S)$	0_{-+}	2983.4 ± 0.5	3021	3058	3079
	$\eta_c(2S)$	0^{-+}	3639.2 ± 1.2	3636	3670	3647
	$J/\Psi(1S)$	1	3096.900 ± 0.006	3132	3125	3131
	$\psi(2S)$	1	3686.097 ± 0.010	3697	3703	3701
$car{c}$	$\psi(3770)$	1	3773.13 ± 0.35	3782	3719	3709
	$\chi_{c0}(1P)$	0_{++}	3414.75 ± 0.31	3416	3431	3436
	X(3915)	0_{++}	3918.4 ± 1.9	3905	3936	3941
	$\chi_{c1}(1P)$	1++	3510.66 ± 0.07	3478	3443	3426
	$h_c(1P)$	1^{+-}	3525.38 ± 0.11	3488	3459	3447
	D_s^{\pm}	0-	1968.27 ± 0.10	1959	1993	_
	$D_s^{*\pm}$	1-	2112.1 ± 0.4	2137	2117	_
$car{s}$	$D_{s0}^*(2317)^{\pm}$	0_{+}	2317.7 ± 0.6	2381	2411	_
	$D_{s1}(2460)^{\pm}$	1+	2459.5 ± 0.6	2457	2425	_
	$D_{s1}(2536)^{\pm}$	1^+	2535.10 ± 0.06	2469	2447	_
	$D^{\pm,0}$	0-	1867.23	1870	1905	_
	$D^*(2007)^0$	1	2008.62	2055	2038	_
$car{q}$		0_{+}	2318 ± 29	2294	2329	_
	$D_1(2420)^{\pm,0}$	1+	2421.4	2368	2342	_

 $\mathrm{Model}\ \mathrm{M}_{Q\bar{Q}}\Lambda_{\mathrm{OGE}}\!{:}\ \delta_{\mathrm{rms}} = 0.048\ \mathrm{GeV}$

Running coupling $\alpha_s(Q^2)$ versus fixed coupling α_s

$$\alpha_{\rm S}(Q^2) = \frac{1}{\beta_0 \ln \left(\frac{Q^2}{\Lambda_{\rm QCD}^2} + \tau\right)}$$

$$\beta_0 = \frac{33 - 2N_f}{12\pi} \qquad \tau = \exp\left(\frac{1}{\alpha_0\beta_0}\right) \qquad 0.2$$

$$\alpha_{\rm S}(0) = \alpha_0$$

$$\Lambda_{\rm QCD} \text{ is determined through } \alpha_{\rm S}(M_Z^2) = 0.1183$$

$$V_{\rm GA}(p,k) = \frac{4\pi\alpha_{\rm S}(Q^2)}{m_w^2 - q^2} \left(\frac{\Lambda^2 - m_g^2}{\Lambda^2 - q^2}\right)^{n_G}$$

$$V_{\rm GA}(p,k) = \frac{4\pi\alpha_{\rm S}(Q^2)}{m_e^2 - q^2} e^{-q^4/\Lambda^4}$$

$$ightharpoonup$$
 First results do not show an overall improvement over fixed $lpha_{
m s}$

lacktriangle Heavy quarkonia decay constants are smaller, but $\delta_{
m rms}$ of mass spectrum increases

Summary

- ▶ With the simplest, one-channel CST equation and a few global parameters, we get a very nice description of the heavy and heavy-light meson spectrum
- ▶ (S+PS) confining kernel with ~ 0% 30% admixture of Lorentz-vector coupling is compatible with the data
- ▶ A more careful scaling of form factor cutoffs with quark masses can significantly improve the description of the mass spectra
- ▶ Decay constants are very sensitive to details place stronger constraints on the kernel. Further improvements are needed!
- We have generalized our OGE kernel for a running coupling $\alpha_s(Q^2)$. So far no positive impact on the results, but many more tests are still to be done.

Outlook

Next steps:

- Further exploration of cutoff scaling
- Comprehensive study of the effect of a running quark-gluon coupling
- Dynamical quark mass (mass function) from quark self-interaction
- ▶ Tensor mesons (spin \geq 2)
- Extension to the light-quark sector (4-channel CSE)
- Parton distribution functions
- ▶ Relativistic quark-antiquark states with exotic J^{PC}