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Motivation for studying meson structure

‣ Meson properties are measured at many experimental facilities:  
LHC, BABAR, Belle, BES III, GlueX (JLab);  in the future PANDA (GSI)


‣ Trying to find exotic mesons (hybrids, glueballs, … but maybe �  in disguise?) 


‣ We also need to understand “conventional”     -mesons in more detail


‣ Study production mechanisms, transition form factors  
(e.g., important for hadronic contributions to light-by-light scattering)

qq̄
qq̄

Theory: a very large amount of work has already been done on meson structure

 

Many different approaches:

- Lattice QCD 

- Bethe-Salpeter/Dyson-Schwinger Equations 

- Relativistic Quantum Mechanics (point form, front form, instant form) 

- BLFQ (Basis Light-Front Quantization) 

- Chiral quark models

- Constrained dynamics two-body Dirac equation 

- Relativized Schrödinger equation, …
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Our approach

q

q̄

Main goals and features of our approach:
Find      interaction that can be used in all mesons  
(unified model)

Relativistic covariance (work in Minkowski space)

Confinement through a confining interaction kernel, which 
should reduce to linear+Coulomb in the nonrelativistic limit

Learn about the Lorentz structure of the confining interaction

Quark masses are dynamic: self-interaction should be 
consistent with      interaction

Chiral symmetry: massless pion in chiral limit, satisfy the  
axialvector Ward-Takahashi identity

qq̄ Huge mass variation:

from pions (~0.14 GeV)

to bottomonium (> 10 GeV)

q

qq̄

CST - Covariant Spectator Theory
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CST equation for two-body bound states

3

Charge conjugation, denoted by the operator C, trans-
forms quarks into antiquarks and vice versa, accom-
plished by taking the transpose of the vertex function
and changing p1 $ �p2. The amplitude is invariant un-
der charge conjugation if it remains unchanged up to a
phase ⌘, with ⌘2 = 1. The required condition is therefore

C
�1 �T

BS(�p, P ) C = ⌘ �BS(p, P ) , (8)

where we have used that p1 = p+ 1
2P $ �p2 = �p+ 1

2P
implies p $ �p. Performing this operation on Eq. (1),
and using C

�1 �µT
C = ��µ and the charge conjugation

invariant conditions

C
�1

V
T (p, k;P )C = V(�p,�k;P )

C
�1ST (k)C = S(�k) (9)

gives

C
�1�T

BS(�p, P )C = i

Z
d4k

(2⇡)4
V(p,�k;P )S(�k2)

h
C
�1�T

BS(k, P )C
i
S(�k1)

= i

Z
d4k

(2⇡)4
V(p, k;P )S(k1)

h
C
�1�T

BS(�k, P )C
i
S(k2) , (10)

which shows that C
�1�T

BS(�p, P )C satisfies the same
equation as �BS(p, P ) (and hence the two are equal up
to a phase), provided conditions for the propagators and
kernel, Eqs. (7) and (9), are satisfied. We will always
choose kernels that satisfy condition (9).

Note that a crucial step in the derivation was our abil-
ity to change the four-dimensional integration variable
k ! �k. This condition must be preserved when we
specialize to the Covariant Spectator Theory (CST).

B. Charge conjugation invariant CST equations

Next we introduce a charge conjugation invariant form
of the bound-state CST equations. For cases when we
want the correct limit as P ! 0 these are the “four-
channel” equations previously discussed [3].

To motivate the structure of these equations, begin
with the BS equation (1) and consider the k0 integration.
The dressed propagator of quark i with dressed mass m
and renormalization constant Z0 can be written

S(ki) '
Z0(m+ /ki)

m2 � k2i � i✏
(11)

near its poles at ki0 = ±Eki , where Eki ⌘
p
m2 + k2

i .
Figure 2 shows the positions of the four propagator poles
in the complex k0 plane in the bound-state rest frame
(note that k0 is the zero component of the relative mo-
mentum k, not of the individual particle momenta ki).
In the rest frame, the total momentum is Pr = (µ,0),
the quark and antiquark three-momenta ki are equal to
the relative three-momentum k, and therefore Eki = Ek,
with Ek ⌘

p
m2 + k2. However, in the following we will

continue working in an arbitrary frame with total mo-
mentum P in order to emphasize the manifest covariance
of our framework.

To perform the k0 integration we can close the contour
in the lower or upper half plane. In the CST framework
only poles of propagators are included, whereas the poles
of the kernel are moved to higher order kernels, and ne-
glected. As one can see in Fig. 2, in either half plane the

�Ek �
µ
2 �Ek +

µ
2

Ek �
µ
2 Ek +

µ
2

Im k0

Re k0

FIG. 2. (color online) The positive-energy poles (colored crosses
with positive Ek) and negative-energy (white crosses with negative
Ek) poles of the propagators of quark 1 (red with �µ/2) and quark
2 (cyan with +µ/2) in the complex k0-plane in the bound-state rest
frame.

respective two poles are separated by the bound-state
mass µ. If µ is large, the pole closer to the origin dom-
inates the integral, and the more distant pole can be
neglected. However, in the limit P ! 0 the two poles
move close together and the contributions of both must
be taken into account.
First we close the k0 contour in the lower half plane.

Introducing the on-shell momenta k̂i = (Eki ,ki) and us-
ing the form (11) for the dressed propagators permits the
two propagator pole contributions to the right hand side
of (1) to be written

�(p, P ) = �Z0

Z

k1

V(p, k̂1 �
1
2P ;P )(m+ /̂k1)

⇥�(k̂1 �
1
2P, P )S(k̂1 � P )

�Z0

Z

k2

V(p, k̂2 +
1
2P ;P )S(k̂2+ + P )

⇥�(k̂2 +
1
2P, P )(m+ /̂k2) , (12)

Integration over relative energy k0:

‣ Keep only pole contributions from constituent particle 
propagators

‣ Poles from particle exchanges appear in higher-order 

kernels (usually neglected — tend to cancel)

‣ Reduction to 3D loop integrations, but covariant

‣ Correct one-body limit

Symmetrize pole contributions from both half planes: charge conjugation symmetry
CST verticesBS vertex (approx.)

If bound-state mass    is small:

both poles are close together (both important)

µ

= + + +1
2
—{ }

Once the four CST vertices (with one quark on-shell) are all known, one can use this equation 
to get the vertex function for arbitrary four-momenta.

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1
⌦ �5

2

�
� y �µ

1
⌦ �µ2

⇤
VL

� �µ
1
⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1

⌦⇥K
2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

      bound-state with mass    µqq̄Bethe-Salpeter equation for

2PI diagrams
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CST equations
Closed set of equations when external legs are systematically placed on-shell

Solutions: bound state masses !  and corresponding vertex functions �μ Γ

All have smooth one-body limit (Dirac equation) and nonrelativistic limit (Schrödinger equation).

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1
⌦ �5

2

�
� y �µ

1
⌦ �µ2

⇤
VL

� �µ
1
⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1

⌦⇥K
2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

4CSE

1CSE

2CSE

One-channel spectator equation (1CSE): ‣Particularly appropriate for unequal masses


‣Numerical solutions easier (fewer singularities)


‣But not charge-conjugation symmetric

Two-channel spectator equation (2CSE): ‣Restores charge-conjugation symmetry


‣Additional singularities in the kernel

Four-channel spectator equation (4CSE): ‣Necessary for light bound states (pion!)
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The covariant kernel

⇥K(µ)
i = 1i, �

5
i , �

µ
i

Our kernel:

‣Confining interaction: Lorentz (scalar + pseudoscalar) mixed with vector 
Coupling strength σ, mixing parameter y

Fa =
1

2
�a

color SU(3) 
generators

qq̄ color singlets1 for Lorentz structuremomentum 
dependence

p

F a
1

F a
2

⇥K(µ)
1

⇥K
2(µ)

k
V(p, k;P ) =

3

4
F1 · F2

X

K

VK(p, k;P )⇥K(µ)
1 ⌦⇥K

2(µ)

VL(p, k;P ) =
⇥
(1� y)

�
11 ⌦ 12 + �5

1 ⌦ �5
2

�
� y �µ

1 ⌦ �µ2
⇤
VL(p, k;P )

y = 0

y = 1

pure S+PS

pure V

equal weight (constraint from chiral symmetry)
→ E.P. Biernat et al., PRD 90, 096008 (2014)

for correct nonrelativistic limit

‣One-gluon exchange with constant coupling strength  
+ Constant interaction (in r-space) with strength C

↵s Lorentz vector}
VOGE(p, k;P ) + VC(p, k;P ) = ��µ

1
⌦ �2µ[VOGE(p, k;P ) + VC(p, k;P )]

‣Nonrelativistic limit: Cornell type potential V (r) = �r � C � ↵s

r
(for any value of y)
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Covariant confining kernel in CST

‣Covariant generalization: q2 ! �q2

This leads to a kernel that acts like

k̂ = (Ek,k)

value of k at which kernel 
becomes singular

k̂p initial state:
either quark or 

antiquark onshell

‣Does it still confine?

Yes: the vertex function vanishes if both quarks are on-shell!
= 0

More details: Savkli, Gross, PRC 63, 035208 (2001)

Complication: Singularity not only when k = p

hVL�i(p) =
Z

d3k

(2⇡)3
m

Ek
VL(p, k̂)�(k̂) = �8⇡�

Z
d3k

(2⇡)3
m

Ek

�(k̂)� �(k̂R)

(p� k̂)4

k̂R = (EkR ,kR) kR = kR(p0,p)

on mass shell

‣Nonrelativistic linear potential in momentum space:

highly singular automatic subtraction

Cauchy principal 
value singularityhVL�i(p) =

Z
d3k

(2⇡)3
VL(p� k)�(k) = �8⇡�

Z
d3k

(2⇡)3
�(k)� �(p)

(p� k)4

any regular function

FT of ṼL(r) = �r
<latexit sha1_base64="Bm1UIqZIXmcSi2GOl+1Dh2YmP+8="></latexit><latexit sha1_base64="WFN0dK6UDiKYHvtmTvj6XLRotiQ="></latexit><latexit sha1_base64="WFN0dK6UDiKYHvtmTvj6XLRotiQ=">AAAFInichVTdahNBGJ2mq9b401bBG0EGQ6FCCbuCtTdCITdeeFEhbQPZGL+dTJLpzuwsM7M1YdyH8BXEO733HbwTrwQfwwdwdtNqs0nrQGD2O+d8PycfE6WcaeP7P1dqq9616zfWbtZv3b5zd31j896Rlpki9JBILlUnAk05S+ihYYbTTqooiIjT4yhuFfjxKVWayaRtpintCRglbMgIGBfqbzwIDeMDio/6r7bVkxehZiMBWPU3Gn7TD57t7u3ixUvQ9MvT2Pcffa293flw0N9c/R0OJMkETQzhoHU38FPTs6AMI5zm9TDTNAUSw4h23TUBQXXPlgPkeMtFBngolfslBpfRiwoLQuupiBxTgBnrKlYEl2KRyOtbFwMFJTVi4tjYhXGbuT7KqhqzIYZTYByceVgmeOpMxm3awXqqDRVzibqZGe71LEvSzNCEzEYYZhwbiQuf8YApSgyfugsQxZwLmIxBATHu35hzA9KUUwHkQrY5vB30bNFgWWYOSaUy2ajwMYKI8gJN6DsihYBkYEPncm7DnbCYWQlbfObzDHZKiaOMwWAbRgKHrHSywjqpsk6WseIKK64SsiTvulFCEcmJxY2gistWbt+EhCly3nGrSnG7mubWnu1sugSO/8ELDbjdLtXFCOWe5yEZSFP27KLDIuGiJL5SEi9IJuxvkQn7f4UJiy+nL2Z3TTja5R3N0ixRwZVjwDJJdKUkKiTunTh/DPDll6OnzcBvBq/dg7GHZmcNPUSP0TYK0HO0j16iA3SICHqPPqLP6Iv3yfvmffd+zKi1lTPNfTR3vF9/AFei1VE=</latexit><latexit sha1_base64="4kcnIOf21qZ4evSnalMUT8u8exw="></latexit>
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The One-Channel Spectator Equation (1CSE)

�(p̂1, p2) = �
Z

d3k

(2⇡)3
m1

E1k

X

K

VK(p̂1, k̂1)⇥
K(µ)
1

m1 + /̂k1
2m1

�(k̂1, k2)
m2 + /k2

m2
2 � k22 � i✏

⇥K
2(µ)

Eik =
q

m2
i + k2

= V ��

p̂1 k̂1p̂1

p2 k2

PP

p2

We solve the 1CSE for heavy and heavy-light systems

‣Should work well for bound states with at least one 
heavy quark

‣Much easier to solve numerically than 2CSE or 4CSE

‣C-parity splitting small in heavy quarkonia

‣For now with constant constituent quark masses  

(quark self-energies will be included later)

‣Practical solution: solve equation for relativistic wave functions in a basis of 
eigenstates of total orbital angular momentum L and of total spin S (not necessary, but 
useful for spectroscopic identification of solutions)

Z 1

0
dp p2

⇥
 2
S(p) +  2

D(p) +  2
Ps
(p) +  2

Pt
(p)

⇤
= 1

JP = 0±

JP = 1±

Normalization of radial wave functions

→ probabilities of partial waves

Z 1

0
dp p2

⇥
 2
S(p) +  2

P (p)
⇤
= 1

<latexit sha1_base64="HXuBgCaK2BwM7RFew2qGxnFwAyk="></latexit><latexit sha1_base64="InplVbj/8jJkuWXe1fb/7mOAb78="></latexit><latexit sha1_base64="InplVbj/8jJkuWXe1fb/7mOAb78="></latexit><latexit sha1_base64="H93XGYySLZwbhukY+fEAkbVQgec="></latexit>

Relativistic components

(No problem with parity: relativistic components also have opposite intrinsic parity factor!)
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Data sets used in least-square fits of meson masses 9

Data set
State JP (C) Mass (MeV) S1 S2 S3
⌥(4S) 1�� 10579.4±1.2 •
�b1(3P ) 1++ 10512.1±2.3 •
⌥(3S) 1�� 10355.2±0.5 • •
⌘b(3S) 0�+ 10337
hb(2P ) 1+� 10259.8±1.2 •
�b1(2P ) 1++ 10255.46±0.22±0.50 •
�b0(2P ) 0++ 10232.5±0.4±0.5 • •
⌥(1D) 1�� 10155
⌥(2S) 1�� 10023.26±0.31 • •
⌘b(2S) 0�+ 9999±4 • • •
hb(1P ) 1+� 9899.3±0.8 •
�b1(1P ) 1++ 9892.78±0.26±0.31 •
�b0(1P ) 0++ 9859.44±0.42±0.31 • •
⌥(1S) 1�� 9460.30±0.26 • •
⌘b(1S) 0�+ 9399.0±2.3 • • •
Bc(2S)

± 0� 6842±6 •
B+

c 0� 6275.1±1.0 • • •
Bs1(5830) 1+ 5828.63±0.27 •
B1(5721)

+,0 1+ 5725.85±1.3 •
B⇤

s 1� 5415.8±1.5 • •
B0

s 0� 5366.82±0.22 • • •
B⇤ 1� 5324.65±0.25 • •
B±,0 0� 5279.45 • • •
X(3915) 0++ 3918.4±1.9 • •
 (3770) 1�� 3773.13±0.35 • •
 (2S) 1�� 3686.097±0.010 • •
⌘c(2S) 0�+ 3639.2±1.2 • • •
hc(1P ) 1+� 3525.38±0.11 •
�c1(1P ) 1++ 3510.66±0.07 •
�c0(1P ) 0++ 3414.75±0.31 • •
J/ (1S) 1�� 3096.900±0.006 • •
⌘c(1S) 0�+ 2983.4±0.5 • • •
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⌥(1D) and ⌘b(3S) are estimates taken from Ref. [61]. There
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the corresponding open-flavor threshold. As exceptions,
a few states located slightly above threshold but with
very small widths are considered as well. We restrict
our analysis to mesons with JP = 0±, 1±, representing
already the vast majority of the experimental states.

There are two di↵erent ways how we quantify the rela-
tion between the masses µi({↵k(M)}), calculated from a
theoretical model M specified through a set of parame-
ters {↵k(M)}, and a certain set S of experimental masses
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is the quantity that is being minimized, and its value is
therefore a measure of the quality of the fit.
On the other hand, we also want to be able to evaluate

the ability of a given model to predict states it was not
fitted to. For this purpose we also calculate rms di↵er-
ences with respect to data sets S0 that are di↵erent from
the set S a model was fitted to. To distinguish these dif-
ferences more clearly from the minimized values we use
the notation �rms(S0) whenever S0 6= S. Note that it is
quite possible that, for particular choices of S and S0, one
model has a higher �rms but a smaller �rms than another.
We chose three di↵erent sets of data to fit our model

parameters to: the set called S1 consists of pseudoscalar
meson states only (it is identical to the one used in [57]
to fit the model named P1), the set S2 includes pseu-
doscalar, scalar, and vector states, and the largest set,
S3, adds a number of axial vector states to the states
contained in S2. A list of these states and their masses
is given in Table I.
We constructed several interaction models by fitting

to these three data sets while, in some cases, placing
constraints on certain parameters. The results of our
fits are summarized in Table II. In all cases, the rms
di↵erence �rms is given with respect to the data set S3,
containing a total of 39 states.
Models M0S1 and M0S2, previously denoted in ref.[57]

by P1 and PSV1 respectively, were fitted with fixed val-
ues for the constituent quark masses and mixing param-
eter y = 0 [57]. They should be compared to the new
models M1S1 and M1S2, in which the quark masses and
y were allowed to vary freely. We see that the addition
of 5 free parameters leads to a lower minimum in �rms,
but the overall rms di↵erence �rms changes by very lit-
tle (it even increases from M0S1 to M1S1). Based on the
data set S1, the fit finds no improvement in varying y,
such that the new minimum is located again at y = 0.
This is not the case for data set S2, which prefers a finite
value of y of approximately 0.25. At the same time, the
quark masses change quite considerably, decreasing by
around 200 MeV (more moderately for mb), which is in
part compensated by a similarly smaller constant C. To
see that this compensating e↵ect makes sense, remember
that qq spinor matrix elements of �µ

1
⌦ �µ2 are negative

in the dominant channel with ⇢0 = �. Because of the
overall minus sign in the definition of VC(p, k), lowering
C makes the kernel on the rhs of Eq. (34) smaller, and
lowering the quark masses reduces its lhs. The masses of
the light quarks tend to go as low as possible in these fits.
The final value of 100 MeV is actually the lower limit of
the range in which they were allowed to vary.
The bottomonium system is very rich in measured ex-

cited states. This poses a bit of a challenge for our cal-
culations, because describing higher excited states accu-
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di↵erence �rms is given with respect to the data set S3,
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y were allowed to vary freely. We see that the addition
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S1:   9 PS mesons

S2: 25 PS+V+S mesons

S3: 39 PS+V+S+AV mesons
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q represents a light quark (u or d)
We use mu = md ⌘ mq
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Global fits with fixed quark masses and y=0

mb=4.892, mc=1.600, ms=0.448, mq=0.346 Constituent quark masses (in GeV)

First step: we perform global fits to the heavy + heavy-light meson spectrum

Model parameters not adjusted in the fits:

y = 0Scalar + pseudoscalar confinement

‣Model M0S1: fitted to 9 pseudoscalar meson masses only

‣Model M0S2: fitted to 25 pseudoscalar, vector, and scalar meson masses

Adjustable model parameters: � ↵s C

S. Leitão, A. S., M. T. Peña, E. Biernat, Phys. Lett. B 764 (2017) 38

(Previously called models P1 and PSV1)

Linear and OGE kernels need to be regularized  
We chose Pauli-Villars regularizations with parameter ⇤ = 2m1
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Global fits with fixed quark masses and scalar confinement (y=0)
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Global fits with fixed quark masses and y=0

rms differences to experimental masses (set S3): 
The results of the two fits are remarkably similar!

‣Kernel parameters are already well determined through pseudoscalar states (JP = 0-)

Almost 100% L=0, S=0

(S-wave, spin singlet)

h0�|S1 · S2|0�i = �3/4

h0�|L · S|0�i = 0

h0�|S12|0�i = 0 Tensor force vanishes

Spin-orbit force vanishes

Spin-spin force acts in singlet only

Pseudoscalar states do not constrain spin-orbit and tensor forces, and cannot separate 
spin-spin from central force.

‣Good test for a covariant kernel:

But they should be determined through covariance.

Model M0S1 indeed predicts spin-dependent forces correctly!

Leitão, AS, Peña, Biernat, Phys. Lett. B 764 (2017) 38

Model � [GeV2] ↵s C [GeV]
M0S1 0.2493 0.3643 0.3491
M0S2 0.2247 0.3614 0.3377

Model �rms [GeV]
M0S1 0.037
M0S2 0.036
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Fits with variable quark masses and confinement (S+PS)-V mixing y

y held fixed, other parameters refitted

In a new series of fits we treat quark masses and mixing parameter y as adjustable parameters.

‣Quality of fits not much improved

‣Best model M1S3 has y=0.20, but 

minimum is very shallow

include AV states in fit

{

y and quark masses are not much 
constrained by the mass spectrum.

10

Model Symbol � [GeV2] ↵s C [GeV] y mb [GeV] mc [GeV] ms [GeV] mq [GeV] N �rms [GeV] �rms [GeV]
M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455 9 0.017 0.037
M1S1 � 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230 9 0.006 0.041
M0S2 0.2247 0.3614 0.3377 0.0000 4.892 1.600 0.4478 0.3455 25 0.028 0.036
M1S2 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000 25 0.022 0.033
M1S20 4 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000 24 0.018 0.033
M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493 39 0.030 0.030
M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514 39 0.031 0.031

TABLE II. (color online). Summary table of the kernel parameters of the di↵erent fitting models considered in this work. The
masses calculated from the models labeled with the symbols � , 4, and are shown in Fig. 4. N is the number of states in
the data set used in fitting the model. �rms indicates the minimized root mean square di↵erence with respect to the data set
used in the fit, and �rms is the root mean square di↵erence with respect to data set S3, including both fitted and predicted
states. The values in boldface were held fixed.

FIG. 4. (color online). Masses of heavy-light and heavy mesons with JP = 0± and 1±. The points depicted by the symbols
� , 4, and represent the 1CSE results calculated with the models with matching symbols of Table II. Solid horizontal
lines are the measured meson masses [64]. The two dashed levels are estimates taken from Ref. [61]. There is weak evidence
(at 1.8�) that the ⌥(1D) has been seen [62, 63]. Both models predict a so far unobserved ⌥(2D) between ⌥(3S) and ⌥(4S).
Dashed horizontal lines across the figure indicate open flavor thresholds.

rately requires a larger number of spline functions. In
particular, the ⌥(4S) appears in our calculations as the
5th excited state in the vector bb system, but increasing
the number of basis spline functions accordingly would
be too time-consuming to perform our 8-parameter fits.

To test whether the M1S2 fit might have been distorted
by trying to reproduce the ⌥(4S) mass with insu�cient
numerical accuracy, we performed another fit where this
state was omitted from the fitted data set. To distinguish
from the previous one we denote it by S20. However, the

Parameters in bold were not varied during the fit

rms difference to fitted masses

39 states

25 states

9 states

14

the relativistic components are already quite significant,
and a nonrelativistic description is no longer adequate.

Comparing Figs. 5 and 6 one can also see that the
momentum-space wave functions of bottomonium are
much more spread out, which means that in configura-
tion space they are more compact than the heavy-light
cq mesons.

Figure 5(d) contains another interesting detail: the 1+

ground state is dominated not by one, but by a mixture
of two P waves, a spin triplet and a spin singlet. The
role of these two P waves is interchanged in the first
excited state (not shown in the figure). As already dis-
cussed in the previous section, in a relativistic description
both spin triplets and singlets can contribute to either C-
parity eigenstate. However, the plot in Fig. 5(d) may give
an exaggerated impression of the weight of the singlet P -
wave: its contribution to the total norm is actually only
about 7 %. Nevertheless, the fact that in the almost non-
relativistic �b1(1P ) the singlet component is not smaller
is probably in part due to the lack of charge conjuga-
tion symmetry of the 1CSE. We can speculate that this
singlet wave function will be more suppressed when a
charge-conjugation symmetric two- or four-channel CST
equation is solved. In addition, the presence of a pseu-
doscalar confining kernel also enhances its weight. When
it is turned o↵, the norm integral of the singlet P -wave
is reduced by roughly one half.

The vector meson spectrum of bottomonium is partic-
ularly interesting because of the large number of excited
states below or slightly above threshold that have been
measured. In Fig. 7 we show the wave functions of the
first six vector states of bottomonium. According to the
figure, the first two states are mostly S waves, followed
by alternatingD and S states. The ⌥(1D) is listed in [64]
as a 2++ state, but there is some evidence that 1�� was
also possibly seen. There is, however, no experimental
evidence yet for the predicted ⌥(2D). The figure shows
that there is a small mixture of 2S in our ⌥(1D), and a
small 3S component is present in the ⌥(2D). Apart from
the increasing number of nodes, one can also clearly see
the wave functions are the more concentrated at lower
momenta the higher excited a state is, which means that
they are increasingly spread out in configuration space.

Whereas the structure of the ground state is deter-
mined mostly by the OGE interaction, the higher excited
states should be more sensitive to the confining interac-
tion. We have already seen in the previous section that
the masses of these states can be well described by our
models. To test the importance of the confining inter-
action for the description of the bottomonium excitation
spectrum, we performed fits using the OGE and con-
stant kernels only. The quality of these fits turned out
significantly worse, with rms di↵erences above 100 MeV,
compared to about 30 MeV when the complete kernel is
used. Moreover, the sequence of S- and D-wave domi-
nated states is altered in the bottomonium vector meson
spectrum: the ⌥(2D) and ⌥(4S) swap places. This find-
ing suggests that, once the ⌥(2D) is observed, finding
its mass below or above the mass of ⌥(4S) can tell us
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□□
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FIG. 8. (color online). Variation of �rms in a series of fits
where the parameter y has been held fixed while all other
parameters were fitted. The solid line shows the result of fits
to data set S1 of Tab. I, the dashed and dotted lines refer
to data sets S2 and S3, respectively. The symbols �, 4, ,
and indicate the results of models M1S1, M1S20 , M1S3, and
M0S3 of Tab. II.

whether a linear confining interaction is indeed needed
or not.

C. Constraints on fit parameters

Our model fits of Tab. II show some variation in the
values of the best-fit parameters, depending on which
data set the model is fitted to. In this section we want to
investigate this sensitivity in more detail and determine
how well some of the parameters are actually constrained.
We begin with the parameter y that determines the

mixing between the scalar+pseudoscalar and vector con-
fining interaction. We perform a series of fits, where in
each case y is held fixed at a di↵erent value while all
other parameters are allowed to vary. We restrict y to lie
in the interval between 0 and 0.45. For higher values, the
equation becomes unstable and no physical solutions can
be found—a well-known phenomenon that was observed
with many di↵erent relativistic equations [59, 65].
Figure 8 shows the obtained minima of �rms as a func-

tion of y, using three di↵erent data sets. As already dis-
cussed in Sec. III A, the data set with exclusively pseu-
doscalar mesons prefers y = 0, whereas optimum values
of y between 0.20 and 0.27 are obtained when more data
are included. However, Fig. 8 also shows that, except
for the smallest data set, the minima are very shallow.
In fact, when using data set S3, no particular value of
y seems to be clearly favored over any other. Instead
of accepting the value y = 0.20 of the fit M1S3, we
could choose arbitrarily another value without deterio-
rating the fit significantly.
Figure 9 shows how the constituent quark masses ad-

just when y is changed, and Fig. 10 displays the cor-
responding variations of the couplings strengths param-
eters �, ↵s, and C. For the larger data sets, a trend
is visible that connects smaller y with somewhat higher
masses, whereas the variations in the coupling strength
parameters are rather mild. Overall, the heavy quark
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Mass spectra of heavy and heavy-light mesons

JP
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Bottomonium ground-state wave functions
Calculated with model M1S3
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Radial excitations in vector bottomonium
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Importance of relativistic components

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 31

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions

pseudoscalar

scalar

Ground-state wave functions of model M1S3.
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Importance of relativistic components
Ground-state wave functions of model M1S3.

Mesons in a Covariant Quark Model Sofia LeitãoISU, February 1, 2017 32

SL et al., (in preparation)Using model PSVA we calculated several ground state wave functions

vector

axial vector
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Regularization of the kernel

Loop integration needs to be regularized

clidean space, the dynamics in ladder-rainbow approxima-
tions is driven by a pure Lorentz-vector kernel, essentially
a dressed gluon propagator.

The CST belongs to the approaches related to the BSE,
but is similar in spirit to the DS-BS framework in that it
aims to incorporate the dynamical origin of the constituent
quark masses by dressing the bare quark propagators with
the interquark kernel in a consistent fashion. However,
the CST is formulated and solved directly in Minkowski
momentum space. This is advantageous over Euclidean
formulations (although a number of singularities have to
be handled numerically) because no analytic continuations
are needed to calculate, e.g., form factors [15, 16], even in
the timelike region. The reason is that in CST one only
needs to determine the quark propagator pole positions,
which are all located on the real axis, both for fixed or
running dynamical quark masses. The chosen interaction
kernel is a manifestly covariant generalization of the Cor-
nell potential, and the full Dirac structure of the quarks is
taken into account.

The Covariant Spectator Equation (CSE) is obtained
from the BSE [Fig. 1(a)] by carrying out the loop energy
integration such that only quark-propagator pole contri-
butions are kept [Figs. 1(b) and 1(c)]. This prescription
is motivated by partial cancellations between higher-order
ladder and crossed-ladder kernels, implying that a CST
ladder series e↵ectively contains crossed-ladder contribu-
tions which are necessary for the two-body equation to
reach the correct one-body limit [3].

In this work we are focussing on systems where one
quark is typically much heavier than the other, so we are
close to the one-body limit. The BS ladder approxima-
tion does not possess this limit, and it would not be a
good choice to describe these mesons. On the other hand,
heavy-light systems are ideal to apply a simplified version
of the CSE, the so-called one-channel spectator equation
(1CSE): the positive-energy pole of the heavier quark dom-
inates, such that the other three CST vertex functions can
be neglected. The 1CSE is shown in Fig. 1(c), inside the
solid rectangle.

This equation retains most important properties of the
complete CSE, namely manifest covariance, cluster separa-
bility, and the correct one-body limit. It is also a good ap-
proximation for equal-mass particles, as long as the bound-
state mass is not too small (this excludes the pion from its
range of applicability). In fact, in a properly symmetrized
form to account for the Pauli principle, it has been ap-
plied very successfully to the description of the two- and
three-nucleon systems [17, 18, 19].

A property the 1CSE does not maintain is charge-
conjugation symmetry. Therefore, heavy quarkonium states
calculated with the 1CSE have no definite C-parity. In
principle, this problem is easily remedied by using instead
the two-channel extension inside the dashed rectangle of
Fig. 1(c). However, we decided that the considerable in-
crease in computational e↵ort would not be justified for
the purpose of this work: of the quarkonia with JP = 0±

(a)

(b)

(c)

Figure 1: Graphic representations of (a) the BSE for the qq̄ bound
state vertex function �, where V represents the kernel of two-body
irreducible Feynman diagrams; (b) the BS vertex function approxi-
mated as a sum of CST vertex functions (crosses on quark lines indi-
cate that a positive-energy pole of the propagator is calculated, light
crosses in a dark square refer to a negative-energy pole); (c) the com-
plete CST equation. The solid rectangle indicates the one-channel
equation used in this work, the dashed rectangle a two-channel ex-
tension with charge-conjugation symmetry.

and 1±, only the axial-vector mesons (JP = 1+) come in
both C-parities, and these pairs are separated by only a
few MeV (5 to 6 MeV in bottomonium, 14 MeV in char-
monium). Thus, as long as we do not seek an accuracy
better than about 10-20 MeV, the use of the 1CSE also
for heavy quarkonia is perfectly justified. Consistent with
this level of accuracy, we also set mu = md throughout
this work.

We use a kernel of the general form

V =
⇥
(1� y)

�
11 ⌦ 12 + �5

1
⌦ �5

2

�
� y �µ

1
⌦ �µ2

⇤
VL

� �µ
1
⌦ �µ2 [VOGE + VC] ⌘

X

K

VK⇥K(µ)
1

⌦⇥K
2(µ) , (1)

where VL, VOGE, and VC are relativistic generalizations
of a linear confining potential, a short-range one-gluon-
exchange (in Feynman gauge in this work), and a con-
stant interaction, respectively. The confining interaction
has a mixed Lorentz structure, namely equally weighted
scalar and pseudoscalar structures, and a vector struc-
ture. The parameter y dials continuously between the two
extremes, y = 1 being pure vector coupling, and y = 0
pure scalar+pseudoscalar coupling. The OGE and con-
stant potentials are Lorentz-vector interactions. The signs
are chosen such that—for any value of y—in the static
nonrelativistic limit always the same Cornell-type poten-
tial V (r) = �r � ↵s/r � C is recovered.

2

VGΛ(p, k) = 4παs

m2g − q2 (
Λ2 − m2

g

Λ2 − q2 )
nG

‣ First models used Pauli-Villars regularization, with �  (for simplicity) 
(equivalent to rational form factor with �  and � )


‣ Generalize to other form factors (higher powers or exponential form)  
This is needed for convergence in calculations of decays constants

Λ = 2m1
nA = 1 nG = 1

VAΛ(p, k) = − 8πσ
q4 ( Λ4

q4 + Λ4 )
nA

Rational:

Exponential: VAΛ(p, k) = − 8πσ
q4 e−q4/Λ4 VGΛ(p, k) = 4παs

m2g − q2 e−q4/Λ4

Linear OGE

‣ We considered models with �  or � , or with exponential form

‣ We use global model parameters. But how to scale � ?  

Is �  really the best choice?

(nA, nG) = (1,3) (2,5)
Λ

Λ ∝ m1

(we used mostly � )mg = 0
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Scaling of the cutoff !Λ

Test different scaling rules for �  with the quark masses in bottomonium and charmonium:Λ

Λ = Λsm1 Λ = Λsm1/3
1Λ = Λsm1/2

1 Λ = Λsm0
1 (independent of � )m1 1

Table I. �rms for different form factors and cutoff scaling.

Form factor ⇤ = ⇤sm1 ⇤ = ⇤sm
1/2
1 ⇤ = ⇤sm

1/3
1 ⇤ = ⇤sm

0
1

nA = 1, nG = 3 0.0287 0.0184 0.0148 0.0252
nA = 2, nG = 5 0.0347 0.0166 0.0148 0.0221

Exponential 0.0216 0.0146 0.0126 0.0197

�  (GeV) of fits to 22 experimental �  and �  statesδrms bb̄ cc̄

‣ Clearly, a linear scaling of �  with �  is not the best choice to reproduce the spectrum


‣ A scaling �  works best


‣ This improved scaling leads to excellent combined fits to heavy quarkonia 
(essentially as good as fits to �  and �  separately)

Λ m1
Λ ∝ m1/3

1

bb̄ cc̄

For comparison: M1S3 had  GeVδrms = 0.0247
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G,ji and V rr0

G,ji given in (??) and (180). A(m1,m2) and C(m1,m2) are defined, for instance, in (??) and (??).
It is not absolutely necessary that C(m1,m2) depends on the masses m1 and m2, but in our case some of the splines
contain mass-dependent factors. For each combination of parameters �, ↵s, m1 and m2, the solution of Eq. (205)
yields a number of meson masses µn (�,↵s,m1,m2).

We want to find the values of �, ↵s, and the constituent quark masses mb, mc, ms, and mq = mu = md that
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where the label s characterizes the meson states, indicating the quark flavors as well as other quantum numbers (such
as JPC etc.) and n is the energy level. For instance, for bottomonium states, different s correspond to m1 = m2 = mb

and n = 1, 2, . . . (as many levels as one wants to include in the fit), whereas for Bc states m1 = mb, m2 = mc, and
n = 1, . . . .

The minimization of �2 requires that Eq. (205) has to be solved many times for different values of the parameters.
The calculation of the matrices Vlin(m1,m2) and VOGE(m1,m2) is very time consuming, therefore we have to use a
method that does not need too many recalculations.
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CHAPTER 5. RESULTS

5.5 Decay constants

In this section we present some preliminary results on the calculation of decay constants. These
quantities describe the simplest electroweak transitions, where a meson couples directly to a photon or
to a W boson. In order to compute them, it is necessary to calculate Feynman diagrams such as the one
shown in panel (a) of Fig. 5.22.

Figure 5.22: Diagrammatic representation of: (a) a loop integral, involved in the calculation of a decay constant;
(b) dilepton decay of a vector meson through a virtual photon “ú. Jµ corresponds to the electromagnetic current.
This process can be parameterized by the vector decay constant.

The complete derivation of the expressions for the decay constants within our approach, using the
solutions from the 1CSE, is given in section D.2 of Appendix D. Here, and for completeness, we just list
the obtained results:

• Pseudoscalar mesons:
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2mP
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0
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4 #
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$
, (5.9)

• Vector mesons:
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D
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• Scalar mesons:

fS = 1
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• Axialvector mesons:

fA = 1
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where k̃i = k/(Eik + mi), and Âs, Âd, Âps and Âpt are the wave function components introduced before.
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Nonrelativistic: depend on  (r = 0) (�  only S-waves contribute)→
Relativistic: all partial waves can contribute

Very precise measurements

for some charmonium and 

bottomonium V and PS states

(no data for S and AV)

Vector 
meson
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5.5.2 Decay constants of heavy-quarkonia

In Table 5.16, we show some results for the CST decay constants of pseudoscalar and vector states
of heavy-quarkonia, in comparison with experimental values, and predictions from other theoretical ap-
proaches. Unfortunately, there is no data available for �P æ““ widths for bottomonium and, for that
reason, no experimental values for the corresponding pseudoscalar decay constants are available. Also,
for higher radially excited states, the experimental uncertainties tend to increase.

Quark content n Meson JP (C) PDG Lattice DSE I DSE II BLFQ MQQ̄�OGE (this work)
1 ÷b(1S) 0≠+ ≠ 667+6

≠6 773 756 589 795

2 ÷b(2S) 0≠+ ≠ ≠ 419(8) 285 427 596

3 ÷b(3S) 0≠+ ≠ ≠ 534(57) 333 331 536

4 ÷b(4S) 0≠+ ≠ ≠ ≠ 40(15) ≠ 503

1 �(1S) 1≠≠ 689+5
≠5 649+31

≠31 768 707 689 703

bb̄ 2 �(2S) 1≠≠ 479+4
≠4 481+39

≠39 467(17) 393 484 573

3 13D1 1≠≠ ≠ ≠ 41(7) 371(2) 4.2 26

4 �(3S) 1≠≠ 414+4
≠4 ≠ ≠ 9(5) 366 536

5 23D1 1≠≠ ≠ ≠ ≠ 165(50) ≠ 38

6 �(4S) 1≠≠ 328+17
≠18 ≠ ≠ 20(15) ≠ 518

1 ÷c(1S) 0≠+ 330+13
≠13 393+9

≠9 401 378 368 547

2 ÷c(2S) 0≠+ 211+35
≠42 ≠ 244(12) 82 280 461

3 ÷c(3S) 0≠+ ≠ ≠ 145(145) 206 ≠ 417

cc̄ 4 ÷c(4S) 0≠+ ≠ ≠ ≠ 87 ≠ 387
1 J/Â 1≠≠ 407+5

≠5 405+6
≠6 450 411 404 525

2 Â(2S) 1≠≠ 290+2
≠2 ≠ 30(3) 155 290 531

3 Â(3770) 1≠≠ 97.7+3
≠3 ≠ 118(91) 45 0.9 98

Table 5.16: Decay constants for pseudoscalar and vector heavy quarkonia states. The experimental values are
obtained from the decay widths listed in PDG [18], and as described in the text. Lattice results are taken from
[102–105], DSE I and DSE II are Dyson-Schwinger calculations given in [106], and BLFQ results are reported in [70].
MQQ̄�OGE denotes the model we used to calculate the CST decay constants for quarkonia, and whose parameters are
specified in Table 5.17. All values are in units of MeV.

The CST results are obtained with a model that we label as “MQQ̄�OGE"8, and that fits bb̄ and cc̄ states
exclusively. It takes into account the experimental masses of theses states (22 in total), and also uses the
available experimental values for the decay constants (9 values). The fit is done with a fixed Pauli-Villars
cut-off parameter of � = 1.5 m1 and with 24 splines. The parameters of this fit are specified in Table 5.17.

8where the subscript QQ̄ indicates the set of states used in the fit, in this case only QQ̄ states, and the label �OGE that the
calculations were done using the new Pauli-Villars term for the OGE kernel (see Eq. (4.75))

86

CST
Model � :   �         �  GeVMQQ̄ΛOGE nA = 1, nG = 3, Λ = 1.5m1 δrms = 0.048

Lattice: HPQCD Collaboration. Phys. Rev. 
D 86, 074503 (2012); Phys. Rev. D 82, 
114504 (2010); Phys. Rev. D 86, 094501 
(2012); Phys. Rev. D 91, 074514 (2015). 

DSE: A. Krassnigg, M. Gomez-Rocha, and 
T. Hilger, Journal of Physics: Conference 
Series 742, 012032 (2016). 

BLFQ: Y. Li, P. Maris, and J. P. Vary, Phys. 
Rev. D 96, 016022 (2017).

Very difficult to get a 
good fit! (especially in � )cc̄

CST fits indicate trade-off 
between descriptions of 
mass spectrum and decay 
constants.
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results perform acceptably with respect to this point, because the mass spectrum determined with model
MQQ̄�OGE is only marginally worse than the ones obtained with the previous fits. The specific values for
the mass spectrum predicted with this model are given in Table 5.18.

Quark content Meson JP (C) Exp. Mass M1S3 MS3�OGE MQQ̄�OGE

÷b(1S) 0≠+ 9399.0 ± 2.3 9363 9402 9474
÷b(2S) 0≠+ 9999 ± 4 9963 9991 9992
÷b(3S) 0≠+ 10337 10321 10356 10346
�(1S) 1≠≠ 9460.30 ± 0.26 9472 9460 9505
�(2S) 1≠≠ 10023.26 ± 0.31 10009 10015 10008
�(1D)? 1≠≠ 10155 10150 10134 10096
�(3S) 1≠≠ 10355.2 ± 0.5 10356 10373 10357

bb̄ �(4S) 1≠≠ 10579.4 ± 1.2 10647 10668 10650
‰b0(1P ) 0++ 9859.44 ± 0.42 ± 0.31 9853 9838 9834
‰b0(2P ) 0++ 10232.5 ± 0.4 ± 0.5 10219 10227 10211
‰b1(1P ) 1++ 9892.78 ± 0.26 ± 0.31 9894 9871 9850
hb(1P ) 1+≠ 9899.3 ± 0.8 9901 9876 9852
‰b1(2P ) 1++ 10255.46 ± 0.22 ± 0.50 10250 10247 10221
hb(2P ) 1+≠ 10259.8 ± 1.2 10256 10251 10222
‰b1(3P ) 1++ 10512.1 ± 2.3 10543 10553 10527

bc̄ B+
c 0≠ 6275.1 ± 1.0 6284 6264 ≠

Bc(2S)± 0≠ 6842 ± 6 6846 6845 ≠
B0

s 0≠ 5366.82 ± 0.22 5366 5344 ≠
bs̄ Bú

s 1≠ 5415.8 ± 1.5 5452 5423 ≠
Bs1(5830) 1+ 5828.63 ± 0.27 5787 5767 ≠
B±,0 0≠ 5279.45 5292 5274 ≠

bq̄ Bú 1≠ 5324.65 ± 0.25 5373 5352 ≠
B1(5721)+,0 1+ 5725.85 ± 1.3 5703 5690 ≠
÷c(1S) 0≠+ 2983.4 ± 0.5 3021 3058 3079
÷c(2S) 0≠+ 3639.2 ± 1.2 3636 3670 3647
J/�(1S) 1≠≠ 3096.900 ± 0.006 3132 3125 3131
Â(2S) 1≠≠ 3686.097 ± 0.010 3697 3703 3701

cc̄ Â(3770) 1≠≠ 3773.13 ± 0.35 3782 3719 3709
‰c0(1P ) 0++ 3414.75 ± 0.31 3416 3431 3436
X(3915) 0++ 3918.4 ± 1.9 3905 3936 3941
‰c1(1P ) 1++ 3510.66 ± 0.07 3478 3443 3426
hc(1P ) 1+≠ 3525.38 ± 0.11 3488 3459 3447
D±

s 0≠ 1968.27 ± 0.10 1959 1993 ≠
Dú±

s 1≠ 2112.1 ± 0.4 2137 2117 ≠
cs̄ Dú

s0(2317)± 0+ 2317.7 ± 0.6 2381 2411 ≠
Ds1(2460)± 1+ 2459.5 ± 0.6 2457 2425 ≠
Ds1(2536)± 1+ 2535.10 ± 0.06 2469 2447 ≠
D±,0 0≠ 1867.23 1870 1905 ≠
Dú(2007)0 1≠ 2008.62 2055 2038 ≠

cq̄ Dú
0(2400)0 0+ 2318 ± 29 2294 2329 ≠

D1(2420)±,0 1+ 2421.4 2368 2342 ≠

Table 5.18: Comparison of the mass spectrum obtained with the different models discussed in the main text. All
values are in units of MeV.
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Dú±

s 1≠ 2112.1 ± 0.4 2137 2117 ≠
cs̄ Dú

s0(2317)± 0+ 2317.7 ± 0.6 2381 2411 ≠
Ds1(2460)± 1+ 2459.5 ± 0.6 2457 2425 ≠
Ds1(2536)± 1+ 2535.10 ± 0.06 2469 2447 ≠
D±,0 0≠ 1867.23 1870 1905 ≠
Dú(2007)0 1≠ 2008.62 2055 2038 ≠

cq̄ Dú
0(2400)0 0+ 2318 ± 29 2294 2329 ≠

D1(2420)±,0 1+ 2421.4 2368 2342 ≠

Table 5.18: Comparison of the mass spectrum obtained with the different models discussed in the main text. All
values are in units of MeV.
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Model � : �  GeVMQQ̄ΛOGE δrms = 0.048
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Running coupling !  versus fixed coupling !αs(Q2) αs

VGΛ(p, k) = 4παs(Q2)
m2g − q2 (

Λ2 − m2
g

Λ2 − q2 )
nG

‣ First results do not show an overall improvement over fixed � 


‣ Heavy quarkonia decay constants are smaller, but �  of mass spectrum increases

αs

δrms

VGΛ(p, k) = 4παs(Q2)
m2g − q2 e−q4/Λ4

αs(Q2) = 1

β0 ln ( Q2

Λ2
QCD

+ τ)
β0 =

33 − 2Nf

12π
τ = exp ( 1

α0β0 )
αs(0) = α0

�  is determined through �ΛQCD αs(M2
Z) = 0.1183

Nf = 1

Nf = 5

α0 = 0.5
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Summary

‣With the simplest, one-channel CST equation and a few global parameters, we get 
a very nice description of the heavy and heavy-light meson spectrum

‣ (S+PS) confining kernel with ~ 0%—30% admixture of Lorentz-vector coupling is 

compatible with the data 

‣ A more careful scaling of form factor cutoffs with quark masses can significantly 

improve the description of the mass spectra

‣ Decay constants are very sensitive to details — place stronger constraints on the 

kernel. Further improvements are needed!


‣We have generalized our OGE kernel for a running coupling � . 
So far no positive impact on the results, but many more tests are still to be done.

αs(Q2)
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Outlook

Next steps: 

‣ Further exploration of cutoff scaling

‣ Comprehensive study of the effect of a running quark-gluon coupling 

‣ Dynamical quark mass (mass function) from quark self-interaction

‣ Tensor mesons (spin ≥ 2)

‣ Extension to the light-quark sector (4-channel CSE)

‣ Parton distribution functions

‣ Relativistic quark-antiquark states with exotic JPC


