

Deuteron-Alpha Scattering in a Three-Body Approach

Ch. Elster

L. Hlophe, Jin Lei,

F.M. Nunes, A. Nogga A. Deltuva

Office of Science

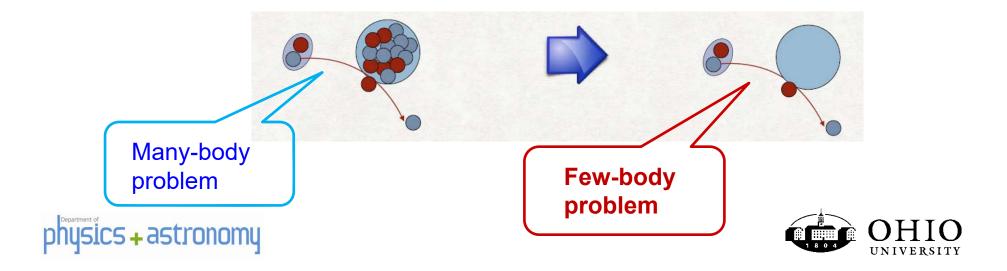
Faddeev Ansatz in Nuclear Reactions

Challenge:

In the continuum, theory can solve the few-body problem exactly.

Cluster structure in nuclei:

Single particle motion of the "last" nucleon in a nucleus near the dripline



Example: (d,p) Reactions: Reduce Many-Body to Few-Body Problem

- Isolate important degrees of freedom in a reaction
- Keep track of important channels
- Connect back to the many-body problem

Hamiltonian for effective few-body poblem:

$$H = H_0 + V_{np} + V_{nA} + V_{pA}$$

np interaction

Effective (optical) potentials p+A and n+A

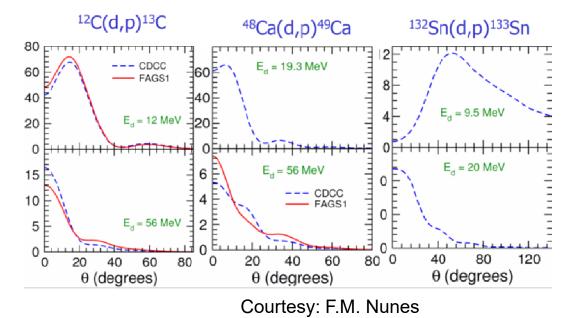
Effective Three-Body Problem

(d,p) Reactions as three-body problem

Faddeev equations: Exact solution of the three-body problem

Momentum space solution pioneered by: Deltuva and Fonseca, Phys. Rev. C**79**, 014606 (2009).

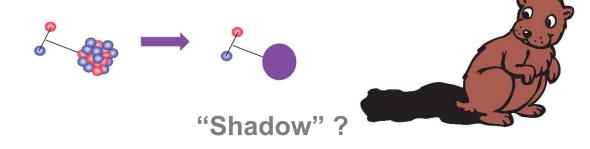
Elastic, breakup, rearrangement channels are included and fully coupled (compared to e.g. CDCC calculations)



Issues:

- current momentum space implementation of Coulomb interaction (shielding) does not converge for Z ≥ 20
- CDCC and Faddeev do not always agree in breakup up channels

(d,p) Reactions: Reduce Many-Body to Few-Body Problem



Hamiltonian for effective few-body poblem:

 $\mathbf{H} = \mathbf{H}_{0} + \mathbf{V}_{np} + \mathbf{V}_{nA} + \mathbf{V}_{pA}$

Nucleon-nucleon interaction well known:

today: chiral interactions, 'high precision' potentials

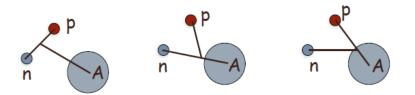
Effective proton (neutron) interactions:

- purely phenomenological optical potentials fitted to data
- optical potentials with theoretical guidance
- microscopic optical potentials
- ab initio derivation of effective interaction being attempted

Solving the effective few-body problem Faddeev equations:

Expand three-body wave function in three Jacobi systems

 $|\Psi\rangle = |\psi_{np}\rangle + |\psi_{nA}\rangle + |\psi_{pA}\rangle$

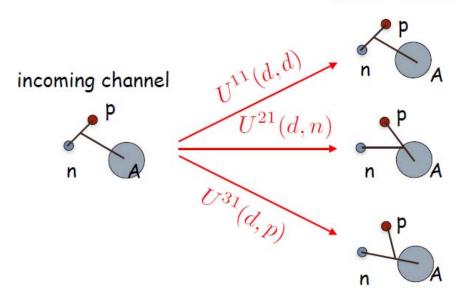


Each sub-system specifies particular boundary conditions: e.g. elastic scattering, transfer reaction

Momentum space: no difference if interactions are local or nonlocal

Solving Faddeev equations

outgoing channels



Faddeev-AGS equations: [Alt et al., Nucl.Phys. B2 (1967) 167]

$$U^{ij} = \bar{\delta}G_0^{-1}(E) + \sum_k \bar{\delta}_{ik} t_k(E)G_0(E)U^{kj}$$

Cross sections: $\sigma_{j\leftarrow i} \propto |\langle \Psi_j | U^{ij} | \Psi_i \rangle|^2$

Cross section

Considerations for two-body subsystems

Are described in momentum space by solutions of LS integral equations:

 $t_i(E) = V + V G_0(E) t_i(E)$

Two-body potential V : $V(p',p) \equiv \text{general form}$

expand in basis
$$V(p',p) = \sum_{nm} h_n(p') \lambda_{mn} h_m(p) \equiv$$
 separable

EST scheme: basis expansion of potential in half-shell and off-shell t-matrices

EST: PRC 8, 46 (1973) $V^{\text{separable}} = VP (PVP)^{-1} PV$ PRC 9, 1780 (1974) $P = \sum_{n} |\phi_{E_n, p_n}\rangle \langle \phi_{E_n, p_n}| \quad \text{and} \quad |\phi_{E_n, p_n}\rangle = |p_n\rangle + G_0^{(+)}(E_n)V|\phi_{E_n, p_n}\rangle$ With $t_i(E) = \sum |h_m^i\rangle \tau_{mn}^i(E) \langle h_n^i|$ t-matrix In two-body system identical observables, PRC 88, 064608 (2013) s + astronomy

Why separable expansion?

Suggestion for explicit inclusion of Coulomb interaction in momentum space (without screening):

Formulation of Faddeev equations in Coulomb basis instead of plane wave basis (separable interactions needed)

A.M. Mukhamedzhanov, V.Eremenko and A.I. Sattarov, Phys.Rev. C86 (2012) 034001

Target excitations:

Including specific excited states \rightarrow separable interactions preferred

Faddeev-AGS equations with separable interactions

Matrix representation

$$\begin{bmatrix} X^{11} \\ X^{21} \\ X^{31} \end{bmatrix} = \begin{bmatrix} 0 \\ Z^{21} \\ Z^{31} \end{bmatrix} + \begin{bmatrix} 0 & Z^{12} \tau^{(2)} & Z^{13} \tau^{(3)} \\ Z^{21} \tau^{(1)} & 0 & Z^{23} \tau^{(3)} \\ Z^{31} \tau^{(1)} & Z^{(32)} \tau^{(2)} & 0 \end{bmatrix} \begin{bmatrix} X^{11} \\ X^{21} \\ X^{31} \end{bmatrix}.$$

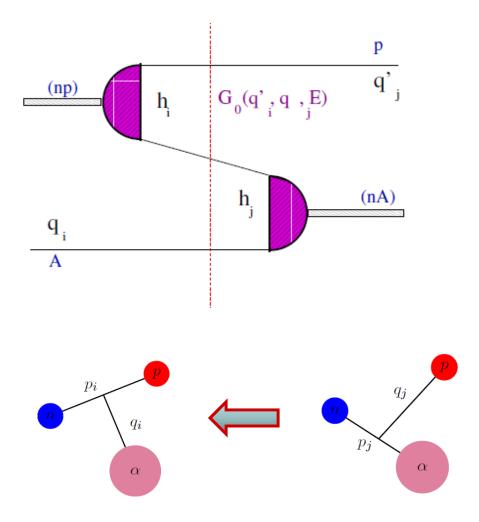
Three components for three different subsystems

Radial part of transition operators

- au^i generalized propagators
- $Z^{(ij)}$ generalized transition amplitudes

Bound state Faddeev equations have similar structure but are a set of homogeneous integral equations

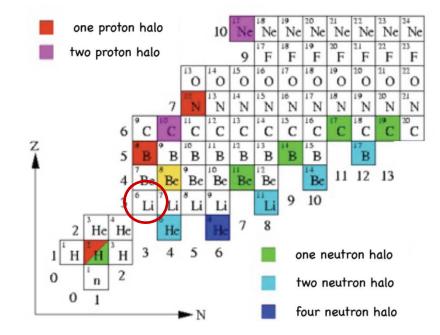
'transition amplitudes' Z^(ij) (q_i,q_i')

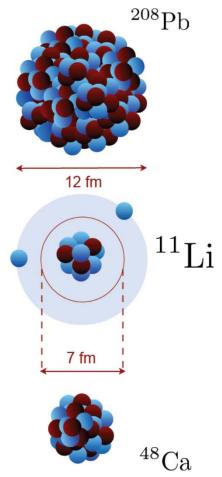


Contains threebody dynamics

Describes transition between channels (j) and (i)

Suitable nucleus for development work: ⁶Li as $n+p+\alpha$ system





Alpha tightly bound: $E_4[\alpha] = -28.3 \text{ MeV}$ n & p loosely bound: $E_3[^6\text{Li}] = -3.7 \text{ MeV}$

Several Faddeev type calculations exist \rightarrow ideal for benchmarking

Two-body interactions

Deuteron channel:

CD-Bonn Potential ($\chi^2/N \approx 1$)

[R. Machleidt, Phys. Rev. C63, 024001 (2001)]

n/p – α channel (S_{1/2}, P_{1/2}, P_{3/2}):

Bang Potential

[J. Bang et al., Nucl. Phys. A405, 126 (1983)]

I. J. Thompson et al, . Phys. Rev. C, 61, 024318 (2000)

$$v(r) = -\frac{V_0}{1 + \exp\left(\frac{r - R_0}{a_0}\right)} + \left(\frac{1}{r}\right) \frac{d}{dr} \frac{V_{so}}{1 + \exp\left(\frac{r - R_{so}}{a_{so}}\right)} \mathbf{l} \cdot \boldsymbol{\sigma}$$

 $V_0 = 44 \text{ MeV } a_0 = 0.65 \text{ fm}, R_0 = 2 \text{ fm}, V_{so} = 40 \text{ MeV fm}$ $a_{so} = 0.37 \text{ fm}, R_{so} = 1.5 \text{ fm}$

Projecting out Pauli-forbidden state of effective nα interaction

- $S_{1/2}$ partial wave supports Pauli-forbidden state $|\phi\rangle$ (unphysical)
- To project out the state $|\phi\rangle$: $V \longrightarrow \tilde{V} = V + \lim_{\Gamma \to \infty} |\phi\rangle \Gamma \langle \phi|$
- Corresponding *t*-matrix:

$$\tilde{t}(E) = t(E) - (E - H_0) \frac{|\phi\rangle\langle\phi|}{(E - E_b)[1 - (E - E_b)/\Gamma]} (E - H_0)$$

• Γ limit can be taken analytically

$$\tilde{t}(p', p; E) = t(p', p; E) - (E - E_{p'}) \frac{\phi(p')\phi(p)}{E - E_b} (E - E_p)$$

Can be generalized to arbitrary number of Pauli-forbidden states Particularly well suited for momentum space Faddeev equations

Projecting out Pauli-forbidden state of effective nα interaction

- $S_{1/2}$ partial wave supports Pauli-forbidden state $|\phi
 angle$
- To project out the state $|\phi\rangle$: $V \longrightarrow \tilde{V} = V + \lim_{\Gamma \to \infty} |\phi\rangle \Gamma \langle \phi|$
- Corresponding *t*-matrix:

$$\tilde{t}(E) = t(E) - (E - H_0) \frac{|\phi\rangle\langle\phi|}{(E - E_b)[1 - (E - E_b)/\Gamma]} (E - H_0)$$

• Γ limit can be taken analytically

$$\tilde{t}(p', p; E) = t(p', p; E) - (E - E_{p'}) \frac{\phi(p')\phi(p)}{E - E_b} (E - E_p)$$

Separable Expansion

- Separable expansion of V also supports bound state $|\phi\rangle,$ must be removed
- Convenient approach: expand \tilde{V} instead of V
- Advantages: (1) straightforward implementation and (2) does not increase rank

Convergence of the ⁶Li binding energy

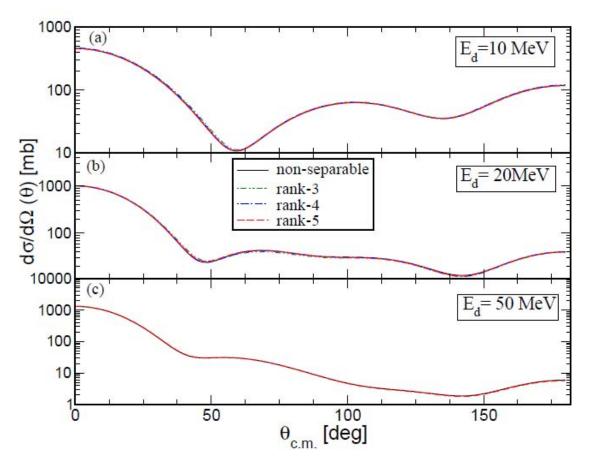
we developed 2 codes for our benchmark (Phys.Rev. C96 (2017) no.6, 064003)

$CD extsf{-Bonn}\ np$ potential			Bang $nlpha$ potential		
label	rank	E_3 [MeV]	label	rank	E_{3b} [MeV]
EST5-1	5	- 3.78 47	EST6-1	6	- 3.785 6
EST5-2	5	- 3.78 48	EST6-2	6	- 3.785 2
EST5-3	5	- 3.78 55	EST6-3	6	- 3.785 2
EST6-1	6	- 3.78 67	EST7-1	7	- 3.786 8
EST6-2	6	- 3.78 68	EST7-2	7	- 3.786 4
EST6-3	6	- 3.78 71	EST7-3	7	- 3.786 7
EST7-1	7	-3.7867	EST8-1	8	- 3.78 70
EST7-2	7	-3.7867	EST8-2	8	- 3.78 70
EST7-3	7	-3.7867	EST8-3	8	- 3.78 66
EXACT:		-3.787	EXACT:		-3.787

• Four significant figures stable w.r.t (1) choice of $\{E_m\}$ and (2) rank; agrees with **exact** calculation; with Coulomb $E_3 = -2.777$ MeV

Elastic scattering: d+α

Benchmark our code with A. Deltuva:

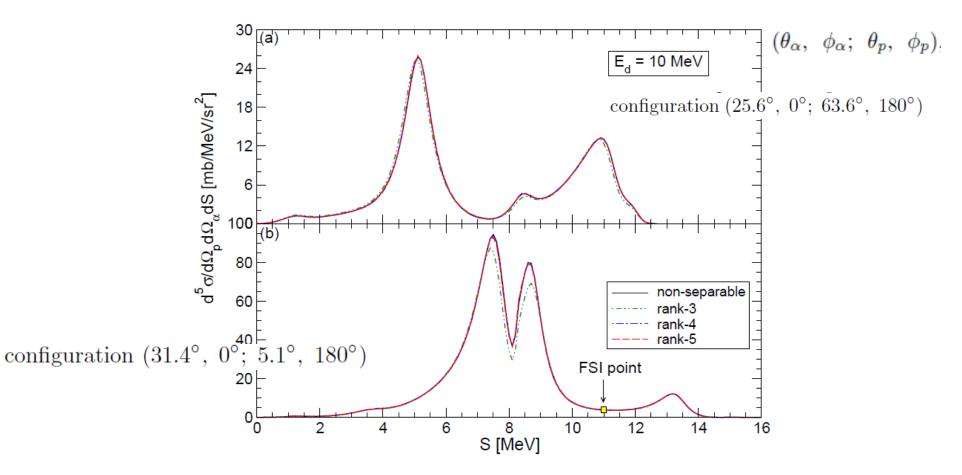


Coulomb force not included

http://arxiv.org/abs/arXiv:1907.01587

Exclusive breakup scattering: d+α

Benchmark our code with A. Deltuva:



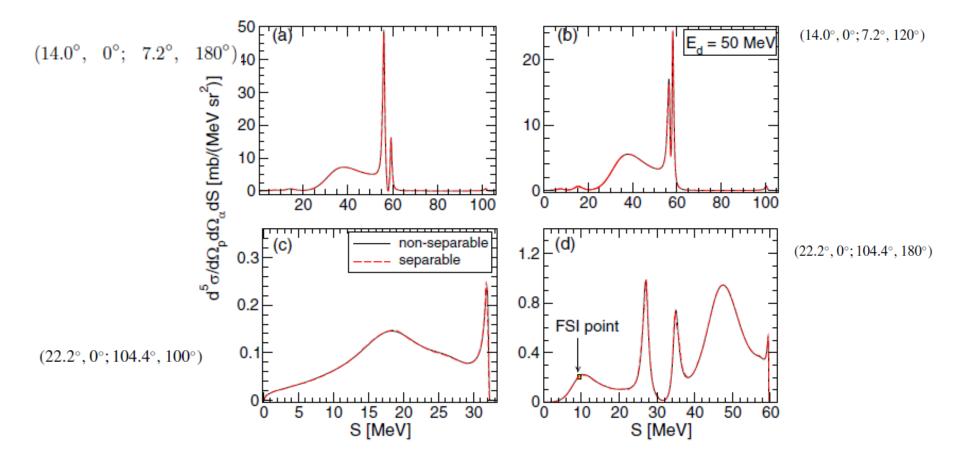
Coulomb force not included

http://arxiv.org/abs/arXiv:1907.01587

Exclusive breakup scattering: d+α

Benchmark our code with A. Deltuva:

 $(\theta_{\alpha}, \phi_{\alpha}; \theta_p, \phi_p)$

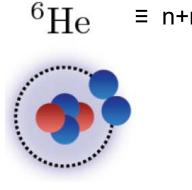


Coulomb force not included

http://arxiv.org/abs/arXiv:1907.01587

n+p+α system at low energy

Reminder:



= n+n+α system = 2 neutron halo system
Borromean system

many studies on universal behavior

⁶Li

≡ n+p+α system

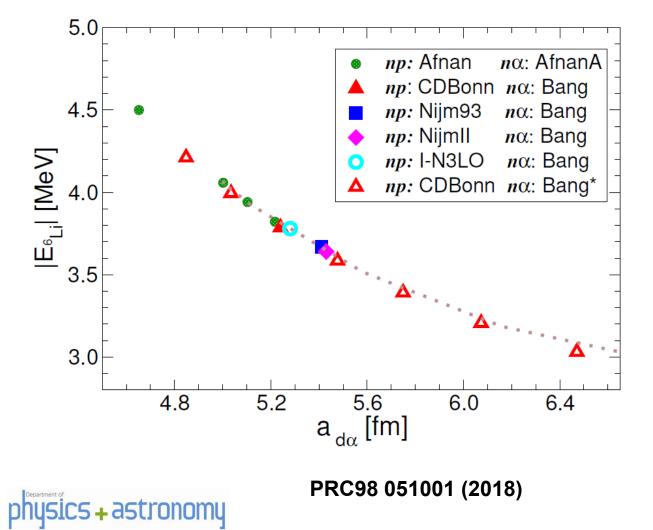
`deuteron' halo ?

universal behavior at low energies?

n+p+α system at low energy

⁶Li

Binding energy vs scattering length in ⁶Li channel



one parameter curve independent of

- np interaction
- nα interaction

universal behavior

Similar to Phillips line in n+n+p system

A.C.Phillips, Nucl. Phys. A 107 209 (1968)

Summary

Benchmark of Faddeev equations for bound states, elastic and breakup scattering successfully completed

- > for n+p+ α system directly
- > with separable expansion of interactions successfully completed.

Projecting out Pauli-forbidden states:

- □ Procedure easily implemented in momentum space Faddeev equations
- □ For non-separable and separable forces alike
- Straightforward generalization for systems with several Pauli-forbidden states (heavy nuclei)

Universal behavior of the low energy n+p+α system

Ongoing work: Faddeev-AGS equations in Coulomb basis

Outlook and Challenges

Can we test this picture?

Scattering $d+\alpha$ can be calculated as many body problem by NCSM+RGM

