Guildford, September 2-6, 2019 24th European Conference on Few-Body Problems in Physics (EFB24)

Description of continuum structures in a discrete basis: Three-body resonances and two-nucleon decays

Jesús Casal

Università degli Studi di Padova

Introduction ²⁶O ¹⁶Be Summary

Some publicity: **Continuum spectrum of** ¹⁰Li (our lithium "trilogy")

- reaction dynamics: ${}^{11}\text{Li}(p,d){}^{10}\text{Li}; {}^{11}\text{Li}(p,pn){}^{10}\text{Li}; {}^{9}\text{Li}(d,p){}^{10}\text{Li}$
- study g.s. properties of two-neutron halo ¹¹Li
- explore unbound ¹⁰Li (${}^{9}Li + n$) states

J. Casal

J.C. [PRC 97 (2018) 034613] arXiv:1801.01280

Description of unbound few-body systems

Solution of an A-body scattering problem with proper asymptotics

Alternative: Pseudostate (PS) method

Diagonalize \mathcal{H} in a given basis of \mathcal{L}^2 functions. Positive-energy eigenstates provide a discrete representation of the actual continuum

Description of unbound few-body systems

Solution of an A-body scattering problem with proper asymptotics

Alternative: Pseudostate (PS) method

Diagonalize \mathcal{H} in a given basis of \mathcal{L}^2 functions. Positive-energy eigenstates provide a discrete representation of the actual continuum

Stabilization approach Hazi & Taylor [PRA 1 (1970) 1109]

stable* eigenstates close to resonance energies provide a good approximation of the inner part of the exact scattering wave function

*: we need stabilization parameter

single-channel two-body case

J. A. Lay [PRC 82 (2010) 024605]

Jacobi coordinates $\{x, y, \hat{x}, \hat{y}\}$

Hyperspherical coordinates

$$\{\rho,\alpha,\widehat{x},\widehat{y}\}$$

$$\rho = \sqrt{x^2 + y^2} \quad \alpha = \arctan \frac{x}{y}$$

Pseudo-State (PS) method

$$\chi^{j}_{\beta}(\rho) = \sum_{i=0}^{N} C^{j}_{i\beta} U_{i\beta}(\rho)$$

 $\mathcal{H}\Psi_n^{j\mu} = \varepsilon_n \Psi_n^{j\mu}$

expanded in \mathcal{L}^2 basis

N: number of hyperradial excitations included

- $\varepsilon_n < 0$ bound states
- $\varepsilon_n > 0$ discretized continuum

Pseudo-State (PS) method

$$\chi^j_eta(
ho) = \sum_{i=0}^N C^j_{ieta} U_{ieta}(
ho)$$

 $\mathcal{H}\Psi_n^{j\mu} = \varepsilon_n \Psi_n^{j\mu}$

expanded in \mathcal{L}^2 basis

N: number of hyperradial excitations included

- $\varepsilon_n < 0$ bound states
- $\varepsilon_n > 0$ discretized continuum

$$V_{\beta'\beta}^{j\mu}(\rho) = \left\langle \mathcal{Y}_{\beta}^{j\mu}(\Omega) \middle| V_{12} + V_{13} + V_{23} \middle| \mathcal{Y}_{\beta'}^{j\mu}(\Omega) \right\rangle$$

> V_{ij} interaction between pairs

central, spin-orbit, spin-spin, tensor. To reproduce binary subsystem

Pseudo-State (PS) method

$$\chi^{j}_{\beta}(\rho) = \sum_{i=0}^{N} C^{j}_{i\beta} U_{i\beta}(\rho)$$

 $\mathcal{H}\Psi_n^{j\mu} = \varepsilon_n \Psi_n^{j\mu}$

expanded in \mathcal{L}^2 basis

N: number of hyperradial excitations included

- $\varepsilon_n < 0$ bound states
- $\varepsilon_n > 0$ discretized continuum

$$V^{j\mu}_{\beta'\beta}(\rho) = \left\langle \mathcal{Y}^{j\mu}_{\beta}(\Omega) \middle| V_{12} + V_{13} + V_{23} \middle| \mathcal{Y}^{j\mu}_{\beta'}(\Omega) \right\rangle + \delta_{\beta\beta'} V_{3b}(\rho)$$

- \succ V_{ij} interaction between pairs central, spin-orbit, spin-spin, tensor. To reproduce binary subsystem
- > V_{3b} phenomenological three-body force

diagonal term. Fixed to fine-tune the three-body energies

Analytical Transformed Harmonic Oscillator (THO) basis

Analytical Transformed Harmonic Oscillator (THO) basis

Example:

 $\Psi_n^{j\mu}(\rho,\Omega)$ PS spectra, ε_n $b=0.7~{\rm fm}$

The ratio γ/b controls the density of PS as a function of the energy.

Example: ⁹Be photodissociation

good description of resonant spectra [PRC90(2014)044304]

26
0 (24 0 + n + n)

barely 2*n* unbound Kondo [PRL 116 (2016) 102503]

Proton removal from ²⁷F on C target @ 201 MeV/u (RIKEN-RIBF)

Very narrow resonance! Ideal for pseudostates and stabilization approach

- V_{cn} : central + spin-orbit term adjust 25 O $d_{3/2}$ resonance
- V_{nn} : density-dependent contact interaction fix 26 O g.s. energy

Dominant dineutron component

Radius suggests halo structure

➤ Three-body model by Hagino and Sagawa [PRC 93 (2016) 034330]

 V_{cn} : central + spin-orbit term adjust ²⁵O $d_{3/2}$ resonance

 V_{nn} : density-dependent contact interaction fix ²⁶O g.s. energy

²⁷F wave function in a ²⁵F + n + n model same core + n potential except for a smaller V_{LS}

Dominant dineutron component

Radius suggests halo structure

Decay-energy spectrum using Green's function method

> This work: pseudostates within the hyperspherical formalism

V_{cn}: same potential as Hagino and Sagawa [PRC 93 (2016) 034330]

V_{nn}: GPT nucleon-nucleon interaction (fixed!)

 V_{3b} : small correction to fix ²⁶O energy

 0^+ g.s. in $^{26}{\rm O}$ as single PS close to the $^{24}{\rm O}+n+n$ threshold

dominant dineutron; $\sim 60\%~d_{3/2}$ components

> This work: pseudostates within the hyperspherical formalism

 V_{cn} : same potential as Hagino and Sagawa [PRC 93 (2016) 034330] smaller V_{LS} for 27 F

V_{nn}: GPT nucleon-nucleon interaction (fixed!)

 V_{3b} : small correction to fix ²⁶O energy

Decay-energy spectrum of 26 O after one proton removal from 27 F

- ➤ Assume sudden reaction (high energies!)
- > Cross section proportional to $\langle ^{26} O | ^{27} F \rangle$ overlaps

 26 O: set of ($^{24}{\rm O}+n+n$) 0^+ PS at discrete energies E_n $^{27}{\rm F}$: 0⁺ ($^{25}{\rm F}+n+n$) ground state at ~-3 MeV

 \succ Comparison with data after convolution with exp. resolution

Decay-energy spectrum of ²⁶O after one proton removal from ²⁷F

- ➤ Assume sudden reaction (high energies!)
- > Cross section proportional to $\langle ^{26} O | ^{27} F \rangle$ overlaps

 26 O: set of (24 O + n+n) 0^+ PS at discrete energies E_n 27 F: 0⁺ (25 F + n+n) ground state at ~-3 MeV

 \succ Comparison with data after convolution with exp. resolution

Good agreement using a discrete basis (simple approach)

This is preliminar!

Ongoing:

- \succ role of nn corr.
- $\succ 2^+$ contribution
- ≻ transfer on 24 O

$$^{16}\mathrm{Be}\;(^{14}\mathrm{Be}+n+n)$$

"Known" 2*n* emitter Spyrou [PRL 108 (2012) 102501]

Proton removal from ¹⁷B on Be target @ 53 MeV/u (MSU)

new RIKEN data - Miguel Marqués and Belén Monteagudo (LPC Caen)

 \Rightarrow It favors correlated emission

Can we describe the decay? (width, *nn* rel. energy, ...)

Stabilization in a discrete basis:

Look for stable pseudostates (PS) under changes in the basis parameters

 \Rightarrow PS around 1.3 MeV captures resonant behavior

J.C. [PRC 97 (2018) 034613]

Ex: ⁶He $(\alpha + n + n)$ non-res. 1⁻ 2^+ resonance

$$\widehat{H}|n\rangle = \varepsilon_n|n\rangle$$

mix res. and non-res.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Diagonalize a **resonance operator** in a PS basis $\{|n\rangle\}$

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- The expansion in terms of $|n\rangle$ allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Identifying and characterizing few-body resonances: a novel approach

Diagonalize a **resonance operator** in a PS basis $\{|n\rangle\}$

$$\widehat{M} = \widehat{H}^{-1/2} \widehat{V} \widehat{H}^{-1/2}, \qquad \widehat{M} |\psi\rangle = m |\psi\rangle; \qquad |\psi\rangle = \sum_{n} \mathcal{C}_{n} |n\rangle$$

- It separates resonant states, which are strongly localized, from nonresonant continuum states, which are spatially spread.
- The expansion in terms of $|n\rangle$ allows to build energy distributions.

[J.C., J. Gómez-Camacho, PRC 99 (2019) 014604]

Decay \Rightarrow time evolution:

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |\mathcal{C}_{n}|^{2} e^{-i\varepsilon_{n}t}$$

Decay \Rightarrow time evolution:

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |\mathcal{C}_{n}|^{2} e^{-i\varepsilon_{n}t} |t\rangle$$

For "ideal" BW:

Resonance quality parameter:

$$a_r(t) = e^{-i\varepsilon_r t - \frac{\Gamma}{2}t} \qquad \qquad \delta^2\left(\varepsilon_r, \Gamma\right) = \frac{\int_0^\infty e^{-xt} |a(t) - a_r(t)|^2 dt}{\int_0^\infty e^{-xt} |a(t)|^2 dt}$$

(1/x: relevant timescale for the resonance formation)

Decay \Rightarrow time evolution:

Amplitudes:

$$|\psi(t)\rangle = \sum_{n} e^{-i\varepsilon_{n}t} |n\rangle \qquad \qquad a(t) = \langle \psi(0)|\psi(t)\rangle = \sum_{n} |\mathcal{C}_{n}|^{2} e^{-i\varepsilon_{n}t}$$

For "ideal" BW:

(

Resonance quality parameter:

$$a_r(t) = e^{-i\varepsilon_r t - \frac{\Gamma}{2}t} \qquad \qquad \delta^2\left(\varepsilon_r, \Gamma\right) = \frac{\int_0^\infty e^{-xt} |a(t) - a_r(t)|^2 dt}{\int_0^\infty e^{-xt} |a(t)|^2 dt}$$

(1/x): relevant timescale for the resonance formation)

In order to find the resonance parameters ε_r and Γ which best describe the time evolution a(t), we perform a minimization

$$\frac{\partial}{\partial \varepsilon_r} \delta^2 \left(\varepsilon_r, \Gamma \right) = 0, \quad \frac{\partial}{\partial \Gamma} \delta^2 \left(\varepsilon_r, \Gamma \right) = 0$$

 \Rightarrow as a function of x, i.e., $\varepsilon_r(x), \Gamma(x)$ $x \to 0$ limit means long times

Application to 0^+ ground-state resonance in ${}^{16}\text{Be}$

width agrees with three-body scattering calc. [PRC 95 (2017) 034605]

Application to 0^+ ground-state resonance in ${}^{16}\text{Be}$

width agrees with three-body scattering calc. [PRC 95 (2017) 034605]

Application to 0^+ ground-state resonance in ${}^{16}\text{Be}$

dineutron dominates wf

Lowest eigenstate of \widehat{M} : stable under basis changes localized state Resonance parameters: $\varepsilon_r = 1.34$ MeV

 $\Gamma = 0.16 \text{ MeV}$

width agrees with three-body scattering calc. [PRC 95 (2017) 034605]

IN PROGRESS:

 E_{nn} relative energy dist.

Compute currents (flux leaving the potential) Use Jacobi momenta PRELIMINAR!!

RIKEN data F.M. Marqués B. Monteagudo's PhD

 0^+ with and without nn inter.

Summary and outlook

- Light nuclear systems at the limit of stability exhibit exotic properties and decay modes (e.g., Borromean halos, 2N-emitters).
- The continuum of three-body systems, such as 2n emitters, can be described using pseudostates within the hyperspherical framework.

Summary and outlook

- Light nuclear systems at the limit of stability exhibit exotic properties and decay modes (e.g., Borromean halos, 2N-emitters).
- The continuum of three-body systems, such as 2n emitters, can be described using pseudostates within the hyperspherical framework.
- (1) ²⁶O (²⁴O + n + n): 0⁺ g.s. barely unbound, dineutron dominates w.f. ~ 60% $d_{3/2}$ components, mixing with $p_{3/2}$ and $f_{7/2}$. Spectrum of ²⁶O via proton-removal from ²⁷F estimated using $\langle ^{26}O | ^{27}F \rangle$ overlaps; good agreement with data.

> 2^+ states; role of nn correlation; population via transfer

Summary and outlook

- Light nuclear systems at the limit of stability exhibit exotic properties and decay modes (e.g., Borromean halos, 2N-emitters).
- The continuum of three-body systems, such as 2n emitters, can be described using pseudostates within the hyperspherical framework.
- (1) ²⁶O (²⁴O + n + n): 0⁺ g.s. barely unbound, dineutron dominates w.f. ~ 60% $d_{3/2}$ components, mixing with $p_{3/2}$ and $f_{7/2}$. Spectrum of ²⁶O via proton-removal from ²⁷F estimated using $\langle ^{26}O | ^{27}F \rangle$ overlaps; good agreement with data.

 \succ 2⁺ states; role of nn correlation; population via transfer

(2) ${}^{16}\text{Be} ({}^{14}\text{Be} + n + n)$: 0⁺ g.s. unbound by $\sim 1 \text{ MeV}$

Diagonalization of a resonance operator in a basis of Hamiltonian pseudostates to identify and characterize few-body resonances.

Decay properties from time evolution (resonance amplitudes).

Importance of nn correlations for E_{nn} rel. energy distribution.

 $> 2^+$ resonance; $E_{\text{core-}n}$ distribution; refinement of the theory

Collaborators:

J. Gómez-Camacho 1,2 , F. M. Marqués 3 , B. Monteagudo 3 , M. Rodríguez-Gallardo 1 , J. M. Arias 1 , L. Fortunato 4 , A. Vitturi 4

- ¹: Universidad de Sevilla
- ²: Centro Nacional de Aceleradores (CNA)
- ³: LPC Caen
- ⁴: Università degli Studi di Padova and INFN

External funding:

"Una manera de hacer Europa"

Project No.

FIS2017-88410-P FPA2016-77689-C2-1-R

Horizon 2020

Grant agreement 654002

Resonance operator: ¹⁶Be; Convergence of lowest eigenstate

Resonance operator: ¹⁶Be; Resonance parameters

Backup slides

Resonance operator: 16 Be; 1⁻, 2⁺ states

J. Casal

Guildford - EFB24