

Nodal structure of wave-functions with non-local potentials

Arnau Rios Huguet Senior Lecturer in Nuclear Theory Department of Physics University of Surrey

This wavefunction is the result of one-dimensional local potential. What is its principal quantum number n?

n = 0, the ground state

 $n = 1 \ n = 2$

The "nodes" theorem

Nodes Theorem

With the energy eigenvalues ordered in a monotonic increasing sequence, the n^{th} eigenfunction $\psi_n(x)$ has n nodes

Messiah, Quantum Mechanics Mandl, Quantum Mechanics

Quantum number

M

Number of nodes \mathcal{N}_n

 $\mathcal{N}_n = n$

Why nodes?

- Nodes in wave-functions associated to low probability regions
- Nodal structure is physically relevant in chemistry
- Many-body nodal structure for Monte Carlo
- Mathematical physics interest

Why non-local potentials?

Local

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x) \qquad \frac{\hat{p}^2}{2m}\psi_n(x) + \int d\bar{x}V(x,\bar{x})\psi_n(\bar{x}) = \epsilon_n \psi_n(x)$$

- Nuclear interactions are non-local by nature (OPE)
- Non-locality arises naturally in many-body (exchange)

Non-local square well

Local well

Non-local well

- Number of bound states depends on depth of well
- At least one bound state for all V_0 and a
- Only one bound state
- Nodeless state (analytical)
- Approaches Heaviside function as V_0 decreases

$$V(x) = x^2$$

Quantum number n

Number of nodes

$$\mathcal{N}_n$$

$$\mathcal{N}_n = n$$

Quantum number \mathcal{n}

Number of nodes

$$\mathcal{N}_n$$

$$\mathcal{N}_n = n$$

$$V(x,x') = \left(\frac{x+x'}{2}\right)^2 \frac{\exp\left(-\frac{|x-x'|}{b}\right)}{2b}$$

$$\begin{array}{c} 1.0 \\ 0.8 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.0 \\ 0.2 \\ 0.0 \\ 0.0 \\ 0.8 \\ -0.0 \\ 0.8 \\ -0.0 \\ 0.$$

x [oscillator length]

Quantum number \mathcal{n}

Number of nodes

$$\mathcal{N}_n$$

$$\mathcal{N}_n \neq n$$

x [oscillator length]

$$V(x,x') = \left(\frac{x+x'}{2}\right)^2 \frac{\exp\left(-\frac{|x-x'|}{b}\right)}{2b}$$

$$\frac{1.0}{0.8} = \frac{1.0}{0.6}$$

$$\frac{1.0}{0.8} = \frac{1.0}{0.6}$$

$$\frac{1.0}{0.4} = \frac{1.0}{0.6}$$

$$\frac{1.0}{0.8} = \frac{1.0}{0.6}$$

$$\frac$$

Quantum number \mathcal{n}

Number of nodes

$$\mathcal{N}_n$$

$$\mathcal{N}_n \neq n$$

Quantum number n

Number of nodes

$$\mathcal{N}_n$$

$$\mathcal{N}_n \neq n$$

Non-local potentials

Nuclear Physics A189 (1972) 161-169; (C) North-Holland Publishing Co., Amsterdam

ANOMALOUS NODES IN THE BOUND STATE WAVE FUNCTIONS FOR NON-LOCAL POTENTIALS

R. H. HOOVERMAN

Department of Physics, Union College, Schenectady, NY 12308

Received 14 February 1972

We conclude that the additional nodes are a phenomenon that can generally be expected whenever the kernel of a non-local potential has positive sign and sufficiently large non-locality.

Hooverman, Nucl. Phys. A 189 155-160, ibid 161-169 (1972)

- Does number of nodes always increase?
- Does potential need to be repulsive?
- Is there a relation between principal quantum numbers and number of nodes in non-local case?

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

- Define Wronskian $\mathcal{W}(\psi_1, \psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$\epsilon_2 > \epsilon_1 \quad \psi_2(b)\psi_1'(b) - \psi_2(a)\psi_1'(a) = (\epsilon_2 - \epsilon_1) \int_a^b dx \, \psi_1 \psi_2$$

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

- Define Wronskian $\mathcal{W}(\psi_1, \psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$\epsilon_2 > \epsilon_1 \quad \psi_2(b)\psi_1'(b) - \psi_2(a)\psi_1'(a) = (\epsilon_2 - \epsilon_1) \int_a^b dx \, \psi_1 \psi_2$$

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

- Define Wronskian $\mathcal{W}(\psi_1,\psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$\epsilon_2 > \epsilon_1 \quad \psi_2(b)\psi_1'(b) - \psi_2(a)\psi_1'(a) = (\epsilon_2 - \epsilon_1) \int_a^b dx \, \psi_1\psi_2$$

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

- Define Wronskian $\mathcal{W}(\psi_1,\psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$\epsilon_2 > \epsilon_1 \quad \psi_2(b)\psi_1'(b) - \psi_2(a)\psi_1'(a) = (\epsilon_2 - \epsilon_1) \int_a^b dx \, \psi_1\psi_2$$

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

- Define Wronskian $\mathcal{W}(\psi_1,\psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$\epsilon_2 > \epsilon_1 \quad \psi_2(b)\psi_1'(b) - \psi_2(a)\psi_1'(a) = (\epsilon_2 - \epsilon_1) \int_a^b dx \, \psi_1\psi_2$$

$$\frac{\hat{p}^2}{2m}\psi_n(x) + \int d\bar{x}V(x,\bar{x})\psi_n(\bar{x}) = \epsilon_n\psi_n(x)$$
 UNIVERSITY OF SURREY

- Define Wronskian $\mathcal{W}(\psi_1,\psi_2) = \psi_1(x)\psi_2'(x) \psi_2(x)\psi_1'(x)$
- W for two independent solutions satisfies:

$$\mathcal{W}(\psi_1, \psi_2)|_b^a = (\epsilon_1 - \epsilon_2) \int_a^b dx \, \psi_1 \psi_2$$

$$+ \int_a^b dx \int d\bar{x} V(x, \bar{x}) \{ \psi_1(x) \psi_2(\bar{x}) - \psi_2(x) \psi_1(\bar{x}) \}$$

$$\epsilon_{2} > \epsilon_{1} \quad \psi_{2}(b)\psi'_{1}(b) - \psi_{2}(a)\psi'_{1}(a) = (\epsilon_{2} - \epsilon_{1}) \int_{a}^{b} dx \, \psi_{1}\psi_{2}$$

$$+ \int_{a}^{b} dx \int d\bar{x} V(x, \bar{x}) \left\{ \psi_{1}(x)\psi_{2}(\bar{x}) - \psi_{2}(x)\psi_{1}(\bar{x}) \right\}$$

$$\frac{\text{Proof 2}}{\text{Continuous procedure}} \quad \left[\frac{\hat{p}^2}{2m} + V(x)\right] \psi_n(x) = \epsilon_n \psi_n(x)$$

Define family of potentials:

ullet For sufficiently small a eigenfunctions are known

$$\psi_n(x) = \begin{cases} A\cos\left(\frac{n\pi}{2a}x\right), & n = 0, 2, 4, \dots \\ A\sin\left(\frac{n\pi}{2a}x\right), & n = 1, 3, 5, \dots \end{cases}$$

Increase a - can we develop new nodes?

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Case 1: one derivative changes sign

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Case 1: one derivative changes sign

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Case 2: no change of sign

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Case 2: no change of sign

Critical a

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Define family of potentials:

- •In taking $a \rightarrow \infty$, we **cannot** generate new nodes
- Number of nodes same as infinite well

$$\mathcal{N}_n = n$$

Proof 2: non-local case

Case 1: one derivative changes sign

$$\frac{\hat{p}^2}{2m}\psi_n(x) + \int d\bar{x}V(x,\bar{x})\psi_n(\bar{x}) = \epsilon_n\psi_n(x)$$

A generic family of potentials

Start from (solvable) local Hamiltonian

$$\left[\frac{\hat{p}^2}{2m} + V(x)\right]\psi_n(x) = \epsilon_n \psi_n(x)$$

Add non-local hamiltonian of form

$$V_k(x, x') = \alpha_k \psi_k(x)^* \psi_k(x')$$

Solution to the problem is then analytical

$$\left[\frac{\hat{p}^2}{2m} + V(x) + \int dx' V_k(x, x')\right] \tilde{\psi}_n(x) = \tilde{\epsilon}_n \tilde{\psi}_n(x)$$

$$\tilde{\psi}_n(x) = \psi_n(x)$$

$$\tilde{\epsilon}_n = \begin{cases} \epsilon_n, & n \neq k \\ \epsilon_k + \alpha_k, & n = k \end{cases}$$

Local

$$n=3, \, \epsilon_3=rac{7}{2}\hbar\omega$$
 _

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$n=0, \, \epsilon_0=\frac{1}{2}\hbar\omega$$

$$k=0, \, \alpha_0=\frac{1}{2}\hbar\omega$$

Local

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=rac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$n=0, \, \epsilon_0=\frac{1}{2}\hbar\omega$$

$$k = 0, \ \alpha_0 = \frac{1}{2}\hbar\omega$$

$$n = 3, \ \epsilon_3 = \frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2 = \frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$n=0, \, \epsilon_0=\hbar\omega$$

Local

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$k = 0, \ \alpha_0 = \frac{1}{2}\hbar\omega$$

$$n = 3, \ \epsilon_3 = \frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$n=0, \, \epsilon_0=\hbar\omega$$

Local

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$k = 0, \ \alpha_0 = \frac{3}{2}\hbar\omega$$

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=0, \, \epsilon_0=\frac{3}{2}\hbar\omega$$

Local

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$k = 0, \ \alpha_0 = \frac{3}{2}\hbar\omega$$

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

Local

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$$

$$k=0, \ \alpha_0=\frac{3}{2}\hbar\omega$$

$$n=3, \, \epsilon_3=\frac{7}{2}\hbar\omega$$

$$n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$$

$$n = 1, \epsilon_0 = 2\hbar\omega$$

$$n = 0, \epsilon_0 = \frac{3}{2}\hbar\omega$$

$$\frac{3}{\hbar}\omega$$

$$\left(\frac{3}{2}\hbar\omega\right)$$

$$\frac{}{} \quad n = 0, \ \epsilon_0 = \frac{1}{2}n\alpha$$

$$\sqrt{0} = 1$$

What can one do now?

- Dial $\alpha_k < 0$ to get attractive non-local term
- Changes number of nodes too

<u>Non-local</u> Local $n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$ $n=2, \, \epsilon_2=\frac{5}{2}\hbar\omega$ $n=1, \, \epsilon_1=\frac{3}{2}\hbar\omega$ $n=0, \, \epsilon_0=\frac{1}{2}\hbar\omega$ $n=0, \, \epsilon_0=\frac{1}{2}\hbar\omega$ $n = 1, \epsilon_1 < 0$

What can one do now?

We can add more than one non-local potential:

$$\tilde{V}(x,x') = \sum_{k} \alpha_k \psi_k(x)^* \psi_k(x')$$

One can reorder spectrum at will

Conclusion & outlook

Conclusion

For a generic family of rank-n separable non-local potentials, there is **no** relation between **number of nodes** and **quantum number**

Conclusion & outlook

Conclusion

For a generic family of rank-n separable non-local potentials, there is **no** relation between **number of nodes** and **quantum number**

Outlook

- Is this a feature specific to rank-n separable potentials?
- Are there subsets of potentials where connections can be drawn?
- Are there results of integro-differential equation theory that can be used here?