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" This wavefunction is the result of
one-dimensional local potential. What
IS i1ts principal quantum number n?

T n=1 n=2
[]

. Start the presentation to see live content. Still no live content? Install the app or get help at PollEv.com/app .
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n=~0 n=1 n=>2

With the energy eigenvalues ordered in a monotonic
increasing sequence, the n" eigenfunction y, (x) has n

nodes

Messiah, Quantum Mechanics
Mandl, Quanfum Mechanics

Quantum number| [Number of nodes *
n N,
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eNodes In wave-functions associated to low
probability regions

e Nodal structure is physically relevant in chemistry
e Many-body nodal structure for Monte Carlo
e Mathematical physics interest




Why non-local potentialse
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local Non-local

N2

2m

2m

e Nuclear inferactions are non-local by na

e Non-locality arises naturally in many-lboc

[ﬁ 4 V(az)] V() = €ntn () p—wn(z) + fd:f:V(a:,i‘)wn(f) = €nPn(T)

2

/.
‘ure (OPE)

vy (exchange)



Non-local square well

Local well
V(x)
' X
—2a —a a 2a
Vot

eNumber of bound states
depends on depth of well
e At least one bound state for

all Vo and a
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Non-local well

V(x,x")
-0.5

e Only one bound state
 Nodeless state (analytical)
eApproaches Heaviside

function as V, decreases

Nichols, American Journal of Physics 33, 474 (1965) 6
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Quantum humber

n

Number of nodes

169 (1972) 7
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We conclude that the additional nodes are a phenomenon that can generally be ex-
pected whenever the kernel of a non-local potential has positive sign and sufficiently

large non-locality.

Hooverman, Nucl. Phys. A 189 155-160, ibid 161-169 (19/72)

eDoes number of nodes always increase®e
e Does potential need to be repulsive<

e|s there a relation between principal guantum
numbers and number of nodes in non-local case?
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*Define Wronskian  W(y1, ¢2) = ¢1(z)vs(z) — P2 (2) ¢ (2)

W for two independent soluﬂorgs saftisfies:
Wbl = (e~ ) | daines

e Consider a and b two consecutive nodes of Y1

b
@6 BOU0) - b)) = (@ —a) | v,
Y1(x)

N

a b
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*Define Wronskian  W(y1,12) = Y1 () (x) — v2(z)yy ()

W for two independent solu’rlons saftisfies:
W(br, o)lf = (61 — €2) f do b1

f da f A7V (2, %) {11 (2)(Z) — o (@)1 (7))

«Consider a and b two consecutive nodes of ¥1

b
€2 > €1 Da(B)(b) — da(a)w,(a) = (e2 — 1) f 4 1o

f i f AV (2, 7) {tn (2)12(F) — o (@)1 ()}

10
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e Define family of potentials:
A Va (X) A
_ , 00
)
31 Va(x):<V(x), —a <z <a
0, x| > a
2! x
\1/
—a 0 a .

e For sufficiently small a eigenfunctions are known

[ Acos (g—ga?), n=20,2,4,---

Yn(@) = < A sin (”—”m), n=1305,---
\

2a

e|NCrease a - can we develop new nodese

Moriconi, American Journal of Physics 75, 284 (2007) 11



[ﬁ + V(x)] () = €ntn ()

2m

Case 1: one derivative changes sign

L vi(a) <0
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Case 1: one derivative changes sign

Critical @ |
Yi(—a) > 0, P1(z™) =0

S \Uen = .

-a xX* a

12
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Proor 2 [p— V@) |00 = entn@) SURREY

2m

e Define family of potentials:
Va (X) A

oo—14 o0
f
_ 1% _
3 V() = (), a<x<a
0, x| > a
2! \
\1/
—-a 0 a .

e|n taking a—«, we cannot generate new nodes
e Number of nodes same as infinite well

Nn=n

Moriconi, American Journal of Physics 75, 284 (2007) 14
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Case 1: one derivative changes sign

Critical @ )
Yi(—a) > 0, P1(z™) =0

2 O\ =0

|5
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e Start from (solvable) local Hamiltonian

2 v(a) | n(@) = enton (@)

2m

e Add non-local hamiltonian of form
Vie(z, ") = apop(z)* o (x')

e Solution to the problem is then analytical

_]32

2m

~

v+ | 12V (@, 2') | (@) = & ()

Bulgac, Nuclear Physics A 487 251 (1998) 16
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Non-local
1
k=0,a0=§ﬁw
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Locdal
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Non-local
1
kIO,(XO:§hW
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k=0, a0=§hw
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Non-local
3
k=0, ay= §hw
n=3J3, € = ghw

5,
n=2 e =—-hw
2

n=1, e = 2hw
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Non-local
k=0, ag = %hw

D
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2
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e Dial ay<0 to get attractive non-local term

e Changes number of nodes too

local

5
n=2,62=§hw

n=1,€1=

n=20,e=

Non-local

|
\'[\D
~
N

|

|
>t
&

n

19



e We can Gdd more than one non-local potential:

Zam ) i (z)
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e One can reorder spec’rrum at will

|l ocal

7
n:3,€3:§hw

Non-local

20
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Conclusion
For a generic family of rank-n separable

non-local potentials, there is no relafion
befween number of nodes and quantum
number

21
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Conclusion
For a generic family of rank-n separable

non-local potentials, there is no relafion
befween number of nodes and quantum
number

Outlook

/s this a feature specific fo rank-n separable pofentialse

e Are there subsets of potentials where connections can
be drawnge

e Are there results of integro-differential equation theory

that can be used here¢
21



