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The Quantum Mechanical Theory of Collis3ions.

I»- In the present course we shall consider the quantum mechanical

treatment of problems of particle interactions in which at least one of

the particles is unbound and therefore able to travel large distances

freely. In effect such particles are able to communicate the results of

their interaction directly to macroscopic detection apparatus* The

interpretation of the resulting data is in general the most direct

way of forming conclusions about the interactions.

A considerable variety of physical phenomena involves unbound

particles» Among the simplest are scattering processes ;in particular

the deflection of particles from a collinated beam. More general

collision processes which induce reactions of various sorts also lie

within the class we shall examine, Our chief concern willbe with the

means of solving problems in which well-defined models have been

postulated to describe the basic interactions. We shall restrict

ourselves, in fact, to the treatment of fairly simple models, and

shall discuss a number of approaches to the problems they raise.

We begin by discussing the scattering of particles by a

simple potential field, fixed in space» The problem of two free

particles with a potential between them of course assumes this form

in the center-of-mass system. By imagining that a beam of particles of

constant strenght is at all times being scattered by the potential, we

cay seek to describe the situation with the stationary-state Schrb'dinger
equation.
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Figure 2.1 Geometry of the scattering process.

k, and � is a phase shift function that describes the cumulative e↵ect of
passage through the potential.

It is convenient to imagine constructing a shadow or impact plane per-
pendicular to k in the region immediately shadowed by the nuclear inter-
action, i.e. close to the nucleus but just beyond its range of interaction,
so that the lateral spreading of the wave function components may remain
quite small. (See Fig. 2.1.) If we take the wave function in that plane to
be exp[ik · r + i�(b)] and then apply Green’s theorem to evaluate the wave
function in the half-space beyond it, we can find the scattering amplitude
from the form it takes far from the plane. For small momentum transfers,
that scattering amplitude is given by [8]

f(k0,k) =
ik

2⇡

Z
e�iq·b�1� ei�(b)

 
d2b. (2.1)

The integration over impact vectors b in this expression can be thought of
as being carried out over the impact plane. The scattering amplitude (2.1)
is in fact a slightly generalized form of the familiar Kircho↵ integral for the
amplitude of Fraunhofer di↵raction. It possesses a number of derivations
other than the one we have outlined [8], and each of these seems to suggest
other generalizations, or to have mathematical advantages of its own. We
shall confine ourselves here simply to mentioning several of them.

When the function �(b) has azimuthal symmetry, for example, about the

Description:
Gross Features:
1. exponentially falling envelope
2. periodic oscillations

Experiments at

Los Alamos



Asymptotic Diffraction Theory
1980

12 Di↵raction theory

Plane wave
Incident Impact or

Shadow Plane

b

Region of
Interaction

Figure 2.1 Geometry of the scattering process.

k, and � is a phase shift function that describes the cumulative e↵ect of
passage through the potential.

It is convenient to imagine constructing a shadow or impact plane per-
pendicular to k in the region immediately shadowed by the nuclear inter-
action, i.e. close to the nucleus but just beyond its range of interaction,
so that the lateral spreading of the wave function components may remain
quite small. (See Fig. 2.1.) If we take the wave function in that plane to
be exp[ik · r + i�(b)] and then apply Green’s theorem to evaluate the wave
function in the half-space beyond it, we can find the scattering amplitude
from the form it takes far from the plane. For small momentum transfers,
that scattering amplitude is given by [8]

f(k0,k) =
ik

2⇡

Z
e�iq·b�1� ei�(b)

 
d2b. (2.1)

The integration over impact vectors b in this expression can be thought of
as being carried out over the impact plane. The scattering amplitude (2.1)
is in fact a slightly generalized form of the familiar Kircho↵ integral for the
amplitude of Fraunhofer di↵raction. It possesses a number of derivations
other than the one we have outlined [8], and each of these seems to suggest
other generalizations, or to have mathematical advantages of its own. We
shall confine ourselves here simply to mentioning several of them.

When the function �(b) has azimuthal symmetry, for example, about the

Description:

Roy: “But what does it mean?”

seven orders 

of magnitude



Asymptotic Diffraction Theory

Conventional two-slit diffraction: I /
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Oscillations with a power-law fall-off

Roy: consider a slit with diffuse edges:

Overview and Preview 7

they remain real-valued. It will reveal particle behaviors that depart sig-
nificantly from those of classical mechanics and describe new behaviors of
scattering amplitudes. Our hope is thereby to be able to find expressions for
the amplitudes that are both compact and suggestive of new interpretations.

As a way of illustrating some of the properties of di↵raction theory, let
us consider the transmission of a plane light wave of propagation vector k,
(k = 2⇡/�), through an aperture in a flat opaque screen. We take the screen
to define the plane of coordinate vectors b and assume that the amplitude
of the scalar wave at any point in the plane of the aperture is A(b). Then,
within the approximations of Fraunhofer di↵raction theory, the amplitude
f(k0,k) of the wave di↵racted in the direction k0 (k0 = k) is proportional to
the two-dimensional Fourier integral [8],

f(k0,k) ⇠

Z
ei(k�k0

)·bA(b) d2b, (1.1)

taken over the plane of the aperture, with d2b the element of area.
The slits and pinholes of physical optics have usually been made of metal.

Their hard-edged character has meant that |A(b)| is approximated as de-
creasing abruptly to zero at the edge of the aperture. We could in principle
however fabricate (for example by photographic means) an aperture such as
a slit of continuously varying transparency, which transmits a wave with a
smooth intensity profile. Let us consider, for example, a straight slit parallel
to the y-axis, which transmits the smoothly varying wave amplitude

A(x) =
�

⇡

1

x2 + �2
, (1.2)

where x is the coordinate transverse to the slit and � is a measure of its
width. Then the amplitude of the di↵racted wave can be written as the
integral

f(k0,k) ⇠
�

⇡

Z 1

�1

e�iqx

x2 + �2
dx (1.3)

⇠
1

2⇡i

Z 1

�1
e�iqx

⇢
1

x� i�
�

1

x+ i�

�
dx, (1.4)

where q = k0
� k. The integrand obviously has two poles in the complex

x-plane. For q < 0 the contour can be closed by a semi-circle in the upper
half-plane, and then the pole at x = i� contributes the residue eq� . For q > 0
the contour can be closed in the lower half-plane and the residue is e�q� ,
but the contour is closed in a clockwise sense. The result for both cases may
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A straight slit with a diffuse edge:

General diffraction amplitude:
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be stated in the form

f(k0,k) ⇠ e��|q|. (1.5)

Since |q| = |k0
� k| = 2k sin ✓

2
, and at small angles this is just k✓, we

already have a hint of how exponential decreases of intensity such as that
shown in Fig. 1.1 can arise.
There are in fact two lessons to be learned here. The first is that a smooth

absorption profile leads to a much more rapid decrease of intensity with
increasing scattering angle than is familiar in optical experiments with sharp-
edged apertures. The second is somewhat more abstract. For q > 0, for
example, a single, complex value of x, the pole at x = �i�, furnishes a
scattering amplitude equivalent to the whole range of real values of x that
span the width of the slit. This is an elementary illustration of a technique
of using complex trajectories that we shall explore further.
The scattered intensity |f(k0,k)|2 for our di↵use slit drops o↵ exponen-

tially, according to Eq. (1.5), but it does not show any of the oscillations
evident in Fig. 1.1. To secure such oscillations we need only let the waves
transmitted by two such slits interfere [3, 15]. Let us assume, for example,
that we have two such slits that are parallel to each other and centered at
x = ±c. Then the wave amplitudes transmitted by the screen can be writ-
ten according to the integral (1.1), which represents the approximation of
Fraunhofer di↵raction theory, as

A(x) =
�

2⇡

⇢
1

(x� c)2 + �2
+

1

(x+ c)2 + �2

�
, (1.6)

and the corresponding di↵raction amplitude, according to Eqs. (1.5) and
(1.6), must then be

f(k0,k) ⇠ e��|q| cos(cq). (1.7)

The angular separation of the successive minima in the intensity is then fixed
and varies inversely with the distance between the slits. There are several
ways in which the di↵raction pattern corresponding to Eq. (1.7) di↵ers still
from the angular distribution of Fig. 1.1. It has periodic zeros while the
experimental intensity oscillates between positive bounds. Furthermore, the
phase of its oscillations is somewhat di↵erent. Both of these di↵erences can
be addressed by assuming that some weak refraction takes place as the wave
penetrates the aperture, and therefore adding appropriate phase shifts to the
amplitude A(b).
This set of ad hoc assumptions can readily be expanded to account for

more of the features of the angular distributions measured in elastic nu-
clear scattering, but to proceed further by such means would risk omitting

Reminiscent of envelope of  experimental data plot shown.
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“Kirchhoff integral” for “Fraunhofer diffraction” (Roy’s terminology):

The “1” only contributes a delta-function in the forward direction
The rest can be evaluated approximately, 


stationary phase at “large” values of  
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delta function (3.1) is replaced by

1

2⇡

Z
e�✏b2�iq·b d2b =

1

2✏
e�

q2

4✏ , (3.3)

which becomes vanishingly small for q � 2
p
✏. The scattering amplitude for

q � 2
p
✏ is then given by the well-defined integral

f(k0,k) = lim
✏!0

k

2⇡i

Z
exp{�✏b2 � iq · b+ i�(b)} d2b. (3.4)

In the classical limit, ~ ! 0, the de Broglie wavelength of the incident
particle goes to zero. The magnitude of the vector q = k0

� k for any fixed
angle of scattering then becomes infinite. The phase shift �(b), as we can
see from Eq. (2.3) also becomes infinite in magnitude, and may be expected
to vary rapidly with the position b as well. The principal contributions to
the integral (3.4) are bound therefore to come from the immediate neigh-
borhoods of the points at which the phase �q · b+�(b) is stationary. These
are the points in the impact plane which satisfy the relation

rb{�q · b+ �(b)} = 0

or

q = rb�(b). (3.5)

The classical significance of this stationary phase condition is immediately
clear. If a particle at the position r = b+̂z is subject to a potential V (b+̂z)
then it experiences a transverse force �rbV (b + ̂z) . The integral of this
force over time, according to Eq. (2.3), is given by ~rb�(b). That transverse
impulse then must represent the transfer of momentum to the scattered
particle,

~(k0
� k) = ~q = ~rb�(b). (3.6)

This is precisely the stationary phase condition (3.5). It possesses only a
discrete set of roots for the impact vector b. There is, in other words, at
most only a discrete set of classical trajectories, if indeed there are any at
all, that can lead to scattering for any given momentum transfer ~q.
To find the roots of (3.5) it is convenient to adopt a coordinate system

within the impact plane. We can use the unit vectors q̂ and n̂ defined in
connection with Fig. 2.2 to write

b = q̂bx + n̂by, (3.7)

and express the phase shift as a function of its Cartesian coordinates, �(bx, by).

18 Asymptotic di↵raction theory

delta function (3.1) is replaced by

1

2⇡

Z
e�✏b2�iq·b d2b =

1

2✏
e�

q2

4✏ , (3.3)

which becomes vanishingly small for q � 2
p
✏. The scattering amplitude for

q � 2
p
✏ is then given by the well-defined integral

f(k0,k) = lim
✏!0

k

2⇡i

Z
exp{�✏b2 � iq · b+ i�(b)} d2b. (3.4)

In the classical limit, ~ ! 0, the de Broglie wavelength of the incident
particle goes to zero. The magnitude of the vector q = k0

� k for any fixed
angle of scattering then becomes infinite. The phase shift �(b), as we can
see from Eq. (2.3) also becomes infinite in magnitude, and may be expected
to vary rapidly with the position b as well. The principal contributions to
the integral (3.4) are bound therefore to come from the immediate neigh-
borhoods of the points at which the phase �q · b+�(b) is stationary. These
are the points in the impact plane which satisfy the relation

rb{�q · b+ �(b)} = 0

or

q = rb�(b). (3.5)

The classical significance of this stationary phase condition is immediately
clear. If a particle at the position r = b+̂z is subject to a potential V (b+̂z)
then it experiences a transverse force �rbV (b + ̂z) . The integral of this
force over time, according to Eq. (2.3), is given by ~rb�(b). That transverse
impulse then must represent the transfer of momentum to the scattered
particle,

~(k0
� k) = ~q = ~rb�(b). (3.6)

This is precisely the stationary phase condition (3.5). It possesses only a
discrete set of roots for the impact vector b. There is, in other words, at
most only a discrete set of classical trajectories, if indeed there are any at
all, that can lead to scattering for any given momentum transfer ~q.
To find the roots of (3.5) it is convenient to adopt a coordinate system

within the impact plane. We can use the unit vectors q̂ and n̂ defined in
connection with Fig. 2.2 to write

b = q̂bx + n̂by, (3.7)

and express the phase shift as a function of its Cartesian coordinates, �(bx, by).
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direction k, i.e., when � = �(b) the angular integral in Eq. (2.1) may be
expressed in terms of the Bessel function J0. We then have [1]

f(k0,k) = ik

Z 1

0

J0(qb)
�
1� ei�(b)

 
b db, (2.2)

an integral that may be regarded as the high-energy limit of the general ex-
pression for a scattering amplitude as a sum of spherical harmonic functions
[16, 20, 12]. We have included a brief discussion of this expansion and its
relation to the di↵raction theory in Appendix A. We need only note here
that the impact parameter b corresponds to the angular momentum ` (for `
su�ciently large) through kb = `+ 1

2
.

The representation of nuclear forces by a simple static potential would,
if taken literally, be a considerable oversimplification. An incident high en-
ergy particle has an appreciable chance, as a rule, of exciting the nucleus
and leaving some part of its energy behind. Such processes bring about a
decrease in amplitude of the part of the wave function propagating at the
incident energy and it is from that part that we calculate the elastic scatter-
ing amplitude. Inelastic scattering, in other words, is a loss mechanism and
its e↵ect can be represented by letting the phase shift function �(b) have
a positive imaginary part. (That representation amounts, in the simplest
optical di↵raction experiments, to letting exp{i�(b)} be zero wherever an
absorbing screen obstructs the wave, and letting it equal unity within any
open aperture.)
It would go far beyond our present needs to delve into the theory of

nuclear forces, but a further element of generality present in (2.1) is surely
worth mentioning. The representation of the nuclear interaction by means
of a complex phase shift function �(b) is considerably more general than its
description by means of a potential V (r), be it real or complex. Not all field
interactions can be described accurately by means of a local potential, but
under the assumptions we have stated there must be a phase shift function
�(b), whether there exists such a local potential or not.
If the interaction is indeed describable by means of a local scalar potential

V (r) then, within the context of the Klein–Gordon equation, the phase shift
function is given approximately by [8]

�(b) = �
1

~v

Z 1

�1
V (b+ ̂z) dz (2.3)

where ̂ is the unit vector ̂ = k/k and v is the velocity of the incident
particle. If V is a spherically symmetric potential, V = V (r), this expression

Classical considerations
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Transverse coordinates:
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The stationary points are then determined by the pair of equations

@

@bx
�(bx, by) = q (3.8)

@

@by
�(bx, by) = 0 (3.9)

The phase shift functions we encounter most often are rotationally invariant,

�(b) = �(b) = �
⇣q

b2x + b2y

⌘
, (3.10)

and in that case Eqs. (3.8) and (3.9) reduce to

bx
b
�0(b) = q (3.11a)

by
b
�0(b) = 0. (3.11b)

The latter of these equations shows that either by or �0(b) must be zero. If
�0(b) were to vanish, however, there could be no stationary point for finite
q according to Eq. (3.11a). A stationary point for q 6= 0, therefore, can only
occur for by = 0, i.e., for b lying in the scattering plane. The coordinate bx
is then determined by what remains of Eq. (3.11),

bx
|bx|

�0(|bx|) = q. (3.12)

Of course, when the phase shift function lacks this rotational symmetry, the
stationary points could lie anywhere in the impact plane.

We can approximate the scattering amplitude (3.4) by expanding the
phase shift function in its integrand in the neighborhood of its stationary
points. If b0 is a stationary point, for example, we can write, in dyadic
notation (i.e., double scalar product)

�(b)� q · b = �(b0)� q · b0 +
1

2
(b� b0)(b� b0) : rbrb�(b)

���
b0
. (3.13)

For the special case of rotational symmetry �(b) = �(b) we have

rbrb�(b) =
b

b

b

b
�00(b)�

bb

b3
�0(b) +

I
b
�0(b) (3.14)

where I stands for the unit dyadic, q̂q̂ + n̂n̂. It is convenient to introduce
Cartesian coordinates centered at the stationary point b0 by writing

b� b0 = q̂x+ n̂y (3.15)
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so that we have

1

2
(b� b0)(b� b0) : rbrb�(b)

���
b0

= ↵xx
2 + ↵yy

2, (3.16)

and the phase function can be written as

�(b)� q · b = �(b0)� q · b0 + ↵xx
2 + ↵yy

2 (3.17)

where

↵x ⌘
1

2
�00(|b0x|) (3.18a)

↵y = �0(|b0x|)/2|b0x| = q/2b0x. (3.18b)

The contribution of the stationary point b0 to the scattering amplitude
(3.4) can now be written as

f0(k
0,k) =

k

2⇡i
e�iq·b0+i�(b0) I0(q) (3.19)

where

I0(q) = lim
✏!0

Z
e�✏(x2

+y2)+i↵xx2
+i↵yy2 dx dy (3.20)

is a Gaussian integral to be carried out over the impact plane. Its two Carte-
sian factors are given by

lim
✏!0

Z 1

�1
e�(✏�i↵y)y2 dy =

✓
i⇡

↵y

◆1

2

(3.21a)

and

lim
✏!0

Z 1

�1
e�(✏�i↵x)x2

dx =

✓
i⇡

↵x

◆1

2

(3.21b)

The integral I0(q) is therefore given by the product

I0(q) =
⇡

(�↵x↵y)
1

2

= 2⇡

✓
�b0x

�0(b0x)�00(b0x)

◆1

2

(3.22)

The contribution of the assumed stationary point b0 to the scattering
amplitude (3.4) can thus be written as

f0(k
0,k) =

k

i

✓
�b0x

q�00(b0x)

◆1

2

e�iqb0 x+i�(b0 x) (3.23)

where we have made use of Eq. (3.11) to substitute q/b0x for �0(b0x)/b0x.
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↵y = �0(|b0x|)/2|b0x| = q/2b0x. (3.18b)

The contribution of the stationary point b0 to the scattering amplitude
(3.4) can now be written as

f0(k
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e�iq·b0+i�(b0) I0(q) (3.19)

where

I0(q) = lim
✏!0
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e�✏(x2

+y2)+i↵xx2
+i↵yy2 dx dy (3.20)

is a Gaussian integral to be carried out over the impact plane. Its two Carte-
sian factors are given by
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The integral I0(q) is therefore given by the product
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The contribution of the assumed stationary point b0 to the scattering
amplitude (3.4) can thus be written as

f0(k
0,k) =
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i
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�b0x

q�00(b0x)

◆1
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e�iqb0 x+i�(b0 x) (3.23)

where we have made use of Eq. (3.11) to substitute q/b0x for �0(b0x)/b0x.

may introduce a convergence factor
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where we have made use of Eq. (3.11) to substitute q/b0x for �0(b0x)/b0x.

Phase of integrand:

Stationary phase approximation

General result (no symmetry):
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To avoid ambiguities of sign for the actual physical scattering amplitude we
must be careful to specify which branch of the square-root factor is to be used

in this expression. We take it to be the branch for which {ei✓}
1

2 = e
1

2
i✓ for

�⇡ < ✓  ⇡. The scattering amplitude must retain the di↵raction symmetry
we have stated in Eq. (2.10) and that furnishes an important check on the
consistency of the phases in Eq. (3.23).

If we do not assume rotational symmetry it is necessary to integrate the
exponential function of a more general quadratic form, but that can easily
be done and yields the more general result

f0(k
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k
�
detrbrb�(b)
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b0

 1

2

exp{i[�q · b0 + �(b0)]}. (3.24)

The determinant in this expression is that of the matrix of second derivatives
of the phase shift function �(b) evaluated at the stationary point b0.

It is quite interesting to compare this quantum-mechanical result with
the classical cross section. To find the classical cross section we need only
know the element of solid angle into which the incident particle is projected
when it impinges on the element of area d� = d2b of the impact plane in
the neighborhood of b. The momentum transfer ~q and the impact vector
b are related by the classical Eq. (3.6) (which is also the stationary phase
condition). It follows then that an element of area d2b is related to a two-
dimensional element of q-vectors via

d2b =
@(b)

@(q)
d2q (3.25)

in which @(b)/@(q) is a Jacobian determinant,

@(b)

@(q)
=
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(3.26)

evaluated at the point b0. Since the element of solid angle d⌦ is given, near
the forward direction by d2q = k2 d⌦, we find that the classical di↵erential
cross section is
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(3.27a)

=
k2
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. (3.27b)

This is, of course, precisely the squared absolute value of the quantum me-
chanical scattering amplitude (3.24).

We have assumed in the example just considered that there is only one
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To avoid ambiguities of sign for the actual physical scattering amplitude we
must be careful to specify which branch of the square-root factor is to be used
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Consider particles impinging on the area

Scattered into a cone given by transverse momenta

Asymptotic di↵raction theory 21

To avoid ambiguities of sign for the actual physical scattering amplitude we
must be careful to specify which branch of the square-root factor is to be used

in this expression. We take it to be the branch for which {ei✓}
1

2 = e
1

2
i✓ for

�⇡ < ✓  ⇡. The scattering amplitude must retain the di↵raction symmetry
we have stated in Eq. (2.10) and that furnishes an important check on the
consistency of the phases in Eq. (3.23).

If we do not assume rotational symmetry it is necessary to integrate the
exponential function of a more general quadratic form, but that can easily
be done and yields the more general result

f0(k
0,k) =

k
�
detrbrb�(b)

��
b0

 1

2

exp{i[�q · b0 + �(b0)]}. (3.24)

The determinant in this expression is that of the matrix of second derivatives
of the phase shift function �(b) evaluated at the stationary point b0.

It is quite interesting to compare this quantum-mechanical result with
the classical cross section. To find the classical cross section we need only
know the element of solid angle into which the incident particle is projected
when it impinges on the element of area d� = d2b of the impact plane in
the neighborhood of b. The momentum transfer ~q and the impact vector
b are related by the classical Eq. (3.6) (which is also the stationary phase
condition). It follows then that an element of area d2b is related to a two-
dimensional element of q-vectors via

d2b =
@(b)

@(q)
d2q (3.25)

in which @(b)/@(q) is a Jacobian determinant,

@(b)

@(q)
=

1�� detrbrb�(b)
��
b0

(3.26)

evaluated at the point b0. Since the element of solid angle d⌦ is given, near
the forward direction by d2q = k2 d⌦, we find that the classical di↵erential
cross section is

d�0
d⌦

= k2
@(b)

@(q)

����
b0

(3.27a)

=
k2

| detrbrb�(b)|b0
. (3.27b)

This is, of course, precisely the squared absolute value of the quantum me-
chanical scattering amplitude (3.24).

We have assumed in the example just considered that there is only one

I /
✓
sin ✓

✓

◆2

(0.1)

x (0.2)

x = ±i� (0.3)

x = ±c� i� (0.4)

q (0.5)

Let particle at the position r = b+ ̂z be subject to a potential V (b+ ̂z).
It experiences a transverse force �rbV (b+ ̂z).
The integral of this force over time is given by h̄rb�(b) since
That transverse impulse then must represent the transfer of momentum
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Figure 3.1 The region where usual optical di↵raction theory applies extends
down to log(qR) ! �1. The wedge qR > 1 contains the domain where
the asymptotic theory is applicable. The size of the scattering target is
represented by R, whereas the beam momentum and momentum transfer
are denoted k and q, respectively.

tends to present the least information about the spatial dependence of the
interaction.
To summarize in more mathematical terms, di↵raction theory rests upon

the two assumptions

q ⌧ k, 1 ⌧ kR, (3.29)

where R is a characteristic size of the scattering target, whereas the asymp-
totic limit also requires q to be large, 1 ⌧ qR, or

1

R
⌧ q ⌧ k. (3.30)

This regime, shown as a triangle in Fig. 3.1, is where our asymptotic con-
siderations will apply.

Region of validity
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4

Two simple examples

Having established a connection with classical scattering theory, we can now
continue our introduction of the asymptotic method by discussing examples
that are both elementary and useful. The first is the familiar case of the
scattering of a charged particle by a Coulomb field and the second is the
scattering by a much smoother interaction that is Gaussian in shape. The
latter example will lead us to consider pairs of trajectories that contribute
interfering amplitudes and we show in a third section how these paired
trajectories can exhibit an interesting behavior that leads in the scattering
of light by water droplets to the formation of rainbows.

4.1 Coulomb scattering

The electrostatic potential energy of a charge e in the field of a point charge
Ze at the origin (r = 0) is

V (r) =
Ze2

4⇡r
. (4.1)

One of the familiar properties of this Coulomb potential is that its influence
is felt so far from the origin that a wave incident upon it can not, strictly
speaking, be represented as a plane wave at any distance from the potential,
however far away. The result, in the present context, is that the phase shift
function �(b) given by Eq. (2.3) or (2.4) is logarithmically divergent. The
problem presented by that behavior is removed however, by imagining that
the field is electrostatically screened by an equal and opposite distribution
of charge, for example one uniformly distributed over a spherical shell, no
matter at how great a distance from the origin. The screening can then be
seen to have virtually no e↵ect on the intensity of scattering at any but
infinitesimal scattering angles.

Point-charge potential:

4.1 Coulomb scattering 25

We shall discuss screening in greater detail in Chapter 11, but let us
first examine what is perhaps its most elementary example. The nuclear
charge Ze is screened by a uniform spherical shell of radius R. The Coulomb
potential is given by Eq. (4.1) for r < R, and it drops abruptly to zero for
r > R. Then the phase shift function �(b) is given by

�(b) = �
2Ze2

4⇡~v

Z R

b

dr
p
r2 � b2

(4.2)

= �2⌘ log

 
R+

p
R2 � b2

b

!
(4.3)

where ⌘ is the Sommerfeld parameter

⌘ =
Ze2

4⇡~v . (4.4)

If the screening radius is of atomic dimensions, for example, it is so much
larger than the wavelengths of typical nuclear projectiles that we may well
consider R large enough to permit expanding the phase shift function as

�(b) = 2⌘ log

✓
b

2R

◆
+O

✓
b2

R2

◆
. (4.5)

Retaining the terms of order b2/R2 and higher, in that case will tend only to
influence the scattered intensity at angles ✓ of order 1/kR and smaller [9].
For scattering angles larger than this infinitesimal value, it su�ces to write

�(b) = 2⌘ log

✓
b

2R

◆
, (4.6)

and it then becomes clear from Eq. (3.4) that the screening radius R only
a↵ects the scattering amplitude through an angle-independent phase factor.

Since �(b) is rotationally symmetric for the Coulomb field the station-
ary phase point determined by Eqs. (3.11b) and (3.12) has by = 0 and bx
determined by

2⌘

bx
= q (4.7)

It is worth remembering that q is an intrinsically positive variable, so that
the stationary point

bx =
2⌘

q
, (4.8)

has the same sign as ⌘, i.e. positive for repulsive forces and negative for
attractive ones (⌘ ! �⌘). For small angles of scattering the stationary
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consider R large enough to permit expanding the phase shift function as

�(b) = 2⌘ log
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◆
. (4.5)

Retaining the terms of order b2/R2 and higher, in that case will tend only to
influence the scattered intensity at angles ✓ of order 1/kR and smaller [9].
For scattering angles larger than this infinitesimal value, it su�ces to write

�(b) = 2⌘ log

✓
b

2R

◆
, (4.6)

and it then becomes clear from Eq. (3.4) that the screening radius R only
a↵ects the scattering amplitude through an angle-independent phase factor.

Since �(b) is rotationally symmetric for the Coulomb field the station-
ary phase point determined by Eqs. (3.11b) and (3.12) has by = 0 and bx
determined by

2⌘

bx
= q (4.7)

It is worth remembering that q is an intrinsically positive variable, so that
the stationary point

bx =
2⌘

q
, (4.8)

has the same sign as ⌘, i.e. positive for repulsive forces and negative for
attractive ones (⌘ ! �⌘). For small angles of scattering the stationary

Stationary-phase point:
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point tends to lie far from the nucleus. As the scattering angle increases it
draws closer to it.
The second derivative of the phase shift function at the stationary phase

point is
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The scattering amplitude given by Eq. (3.23) is thus
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and the di↵erential cross section is thus given by the Rutherford formula

|f(k0,k)|2 =
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(2⌘k)2

|k � k0
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. (4.11)

While this result could hardly be more familiar, the phase factor in the
scattering amplitude (4.10) may be less so. The precise form assumed for
the shape of the screening function may easily be seen to alter the scat-
tering amplitude by an angle independent phase factor. We have taken a
discontinuous model here to describe screening, but the result derived in
Ref. [10] for exponential screening, for example,

2⌘k

q2
exp{�2i⌘ log qR+ 2i arg�(1 + i⌘)}, (4.12)

di↵ers, after expanding arg�(1 + i⌘) to leading order in ⌘, from the result
of Eq. (4.10) only by the constant phase factor

exp{2i⌘ log ⌘}. (4.13)

The above result (4.11) for Coulomb scattering has been shown [14] to
apply also to the case of gravitational interactions in small-angle scattering,
where the e↵ective strength however is energy-dependent.

4.2 Paired trajectories

One of the many unusual features of scattering by the Coulomb field is
that there is only one classical trajectory for each angle of scattering. For
other sorts of interactions that number may be quite di↵erent. Sometimes
two or more particle trajectories may contribute, occasionally there are even
none that contribute in this way. To see a simple example of the latter sort
of behavior let us consider a real valued potential that decreases smoothly
from some finite value to zero within a finite range. An example might be the

Amplitude:
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Rutherford cross section:
identical up to phase
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We shall discuss screening in greater detail in Chapter 11, but let us
first examine what is perhaps its most elementary example. The nuclear
charge Ze is screened by a uniform spherical shell of radius R. The Coulomb
potential is given by Eq. (4.1) for r < R, and it drops abruptly to zero for
r > R. Then the phase shift function �(b) is given by
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and it then becomes clear from Eq. (3.4) that the screening radius R only
a↵ects the scattering amplitude through an angle-independent phase factor.

Since �(b) is rotationally symmetric for the Coulomb field the station-
ary phase point determined by Eqs. (3.11b) and (3.12) has by = 0 and bx
determined by
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bx

(c)

Figure 4.1 (a) A simple monotonic phase shift function, X(bx). (b) The
equationX 0(bx) = q has two solutions, b1 x and b2 x. (c) Schematic depiction
of the trajectories corresponding to impact parameters b1 x and b2 x.

We may pause for a moment to note that this element of the theory of
the rainbow was one of the most remarkable insights of René Descartes.
Descartes seems to have discovered the law of refraction, perhaps indepen-

Real, symmetric phase-shift function

Two solutions to stationary-

phase condition:

4.3 Rainbows 27

Gaussian function V (r) = V0 exp{�r2/R2
}. We shall discuss this example

in detail in Chapters 7 and 11, but all we need for the moment is to let the
phase shift function �(b) be rotationally symmetric, and to take �(bx) to
be an even-valued function with a similar shape, perhaps like that shown in
Fig. 4.1.a.

It follows then that �0(bx) is an odd function of bx. The roots of the
equation

�0(bx) = q, (4.14)

which is equivalent to Eq. (3.12), can immediately be seen from Fig. 4.1.b
to occur in pairs. For the case shown, which corresponds to an attractive
potential, there are two stationary phase points at negative values of bx, that
are labelled b1x and b2x. The corresponding trajectories, shown in Fig. 4.1.c,
both lead to the same momentum transfer ~q.
If the scattering amplitudes that correspond to the two trajectories are

F (b1x) and F (b2x) respectively, then the classical di↵erential cross section
is the sum of the two corresponding intensities,

✓
d�

d⌦

◆

class.

= |F (b1x)|
2 + |F (b2x)|

2. (4.15)

The quantum mechanical di↵erential cross section, on the other hand, will be
given, as long as the two roots b1x and b2x remain distinct, by the intensity

d�

d⌦
= |f(k0,k)|2 = |F (b1x) + F (b2x)|

2 (4.16)

that results from superposing the two amplitudes before squaring. Because
there is no way of knowing which of the two trajectories the particle has
followed the cross section will contain interference terms, and these, as we
shall see, go a long way toward explaining the oscillations present in cross
sections like those of Fig. 1.1.

4.3 Rainbows

It is clear from Fig. 4.1.a, that as we increase the value of q the two roots b1x
and b2x will approach each other and for a certain value of q will coalesce.
For larger values of q there are no roots, which is to say there is no classical
trajectory at all leading to that momentum transfer. This disappearance
of the classical trajectories or “rays” is quite familiar in the theory of the
formation of the rainbow. The principal di↵erence is that for scattering by
raindrops it takes place at a rather backward angle of about 139�, rather
than outside a forward di↵raction cone.
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It is clear from Fig. 4.1.a, that as we increase the value of q the two roots b1x
and b2x will approach each other and for a certain value of q will coalesce.
For larger values of q there are no roots, which is to say there is no classical
trajectory at all leading to that momentum transfer. This disappearance
of the classical trajectories or “rays” is quite familiar in the theory of the
formation of the rainbow. The principal di↵erence is that for scattering by
raindrops it takes place at a rather backward angle of about 139�, rather
than outside a forward di↵raction cone.
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Let particle at the position r = b+ ̂z be subject to a potential V (b+ ̂z).
It experiences a transverse force �rbV (b+ ̂z).
The integral of this force over time is given by h̄rb�(b) since
That transverse impulse then must represent the transfer of momentum
to the scattered particle,
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Figure 4.3 The occurrence of a rainbow at the maximum of the deflection
function X 0(bx).

calculus, that the extremal character of this 139� deflection would lead to
a concentration of the scattered light there. He had indeed explained most
of the geometry of the rainbow and, by including the possibility of a second
internal reflection, was even able to explain the corresponding features of the
secondary rainbow. But because the discovery of dispersion by Newton was
still many years o↵, Descartes’ rainbows lacked altogether any spectral sep-
aration of colors which is their principal hallmark. They were simply bright
arcs of light just as white as direct sunlight.
Let us write qR for the extremal value of q, which defines the “rainbow”

angle of deflection for waves of a particular wavelength � and let bx,R be
the value at which the roots b1x and b2x coalesce. It is quite instructive
to discuss the behavior of the asymptotic approximation for q-values in the
neighborhood of qR. We can assume that in the immediate neighborhood of
its maximum the function �0(bx), as shown in Fig. 4.3, takes the form

�0(bx) ' qR � C(bx � bx,R)
2 (4.17)

where C is some positive constant. Then for q < qR the roots of Eq. (4.14)
are given by

b1x = bx,R �

r
qR � q

C
(4.18a)

b2x = bx,R +

r
qR � q

C
, (4.18b)

and the corresponding values of �00 are

�00(b1x) = 2
p

C(qR � q) (4.19a)

�00(b2x) = �2
p
C(qR � q) (4.19b)

At rainbow point, two real solutions (real phase shift function) run together

Cross section diverges as 

4.3 Rainbows 31

The two stationary points contribute, according to Eq. (3.23), the scattering
amplitudes

F1(b1x) = k

⇢
b1x

2q
p

C(qR � q)

�1

2

ei{�qb1 x+�(b1 x)} (4.20a)

F2(b2x) = k

⇢
�b2x

2q
p

C(qR � q)

�1

2

ei{�qb2 x+�(b2 x)} (4.20b)

Both of these amplitudes become singular as (qR � q)�
1

4 as q approaches
the “rainbow” value qR, and that indeed is the essence of Descartes’ early
observation. In the classical limit of zero wavelength, which corresponds

to the limit of ray optics, the scattered intensity rises as (qR � q)�
1

2 as q
approaches qR and then drops abruptly to zero. There is no scattering for
larger momentum transfers, no illumination outside the rainbow cone.

In quantummechanics, however, as in wave optics, the picture is somewhat
di↵erent. The intensity may reach a strong maximum at the rainbow point
q = qR, but it is not truly singular there. Furthermore scattering to larger
momentum transfers is not completely forbidden. It can indeed take place
with easily observed intensities as a kind of barrier penetration phenomenon.

We shall discuss in Chapter 7 a simple way of correcting the singular
behavior of scattering amplitudes like (4.20). These singularities are so lo-
calized in their occurrence and their e↵ects, however, that the problem of
regularizing them is not often an important one. What is far more important
is to gain some understanding of the non-classical scattering that is present
beyond the rainbow angle. To do that let us begin by noting that for q > qR
the stationary points do not disappear altogether. They simply move o↵ the
real axis into the complex plane of bx-values. For q > qR we can thus write

b1x = bx,R � i

r
q � qR
C

(4.21a)

b2x = bx,R + i

r
q � qR
C

(4.21b)

This shift of the roots into the complex plane of bx is illustrated in Fig. 4.4.
For values of q inside the rainbow angle, q < qR, the integration over all

values of bx required in Eq. (3.4) actually passes through two stationary
points, b1x and b2x. When q exceeds qR, those points are complex, and the
path of integration of bx, along the real axis from �1 to 1 passes through
neither of them. We can easily shift the path of integration into the complex

Beyond rainbow point, two complex solutions, 

only one of which is encountered along path of integration.

Cross section falls off exponentially! Classically forbidden region.
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°

Figure 4.4 The impact parameters b1 x and b2 x in the region of the rainbow
point bx,R (denoted by the circle). For q > qR they become complex.

plane by adding an imaginary constant to bx. That could pass the path
through one of the stationary points, but which one should we choose?

It is important to note at this stage that the second derivative of the phase
function �(bx) for q > qR takes the values

�00(b1x) = 2i
p

C(q � qR) (4.22a)

�00(b2x) = �2i
p

C(q � qR) (4.22b)

at the stationary points, while 1/bx (cf. Eq. (3.18a)) takes the values

1
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(4.23a)

1

b2x
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1

bx,R + i�(q)
(4.23b)

where

�(q) ⌘

r
q � qR
C

(4.24)

For the roots we have designated as b1x both 1/b1x and �00 have positive
imaginary parts. By referring back to Eqs. (3.18a), (3.18b), (3.21a), and
(3.21b) we see that the bx- and by-integrations, when carried out through this
point will both converge as the integral of a Gaussian function, which is to
say quite rapidly. Integrating through the point b2x on the other hand would
furnish divergent results for both. The most natural procedure therefore is to
shift the integration path in the negative imaginary direction of the bx-plane
by introducing the variable

b0x = bx � i�(q) (4.25)

and then integrating over real values of b0x from �1 to 1. That procedure,
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It experiences a transverse force �rbV (b+ ̂z).
The integral of this force over time is given by h̄rb�(b) since
That transverse impulse then must represent the transfer of momentum
to the scattered particle,

h̄(k0 � k) = h̄q = h̄rb�(b). (0.6)

2⇥ 2 Jacobian determinant (0.7)
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°

°

Figure 7.3 Di↵erential cross sections for �g(b) = Ag exp(�b2/�2), with Ag

real; (a) Ag = 5, (b) Ag = 10, (c) Ag = 15 (next page). The scale parameter
� is 1 fm. The inserts show the trajectories of stationary points for the range
in momentum transfer 0.02 GeV/c  q  6 GeV/c (dotted). The parts of
the trajectories that correspond to the cross section plots, 0.1 GeV/c 

q  3 GeV/c, are indicated as solid curves. The arrows indicate the sense
in which the stationary points move as the momentum transfer incrases.
The di↵erential cross sections contributed by each of the stationary points,
↵, �, and �, are shown as dotted curves. The trajectory � contributes only
out to the rainbow point. The solid curves show the resulting cross section,
evaluated in the asymptotic approach (rainbow singularities occur at the
discontinuities), whereas the dashed curves show the results of numerical
evaluations of the di↵raction integrals.

A less trivial example

Real gaussian

58 Gaussian edge

Figure 7.1 Phase shift functions (7.1)–(7.3) with a Gaussian edge. The
same three phase shift functions are shown both in linear (left panel) and
logarithmic (right panel) representations.

is the edge region which is important. This region is better illustrated on a
logarithmic scale, in the right panel of Fig. 7.1. With the normalization of
Eq. (7.4), the edge region is for these three phase shift functions essentially
the same. We will see below, that the di↵erential scattering cross sections
will also be rather similar.

Since these phase shift functions are all symmetric under rotation, all the
stationary phase points will occur at by = 0. We will therefore, as in Chap-
ter 5, only need to make use of the function �(bx, 0). It will be convenient
therefore to abbreviate it as

X(bx) ⌘ �(bx, 0). (7.5)

An important di↵erence between the three functions (7.1)–(7.3) is that
the Gaussian function X(bx) is analytic in the entire complex bx-plane. For
the logarithmic case (7.2) and the “Fermi–Gaussian” (7.3), on the other
hand, the function X(bx) possesses branch points and poles successively for

b2x = c2 + (2n+ 1)i⇡�2, n = 0,±1,±2, . . . (7.6)

7.1 The real-valued Gaussian phase shift function

For the simple Gaussian phase shift function of equations (7.1) and (7.5),

X(bx) = Ag exp(�b2x/�
2), (7.7)

“exact” numerical

inside rainbow: 3 stat. points
outside rainbow: 2 stat. points
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°

°

Figure 11.3 As Fig. 11.2, for the generalized Gaussian charge distribu-
tion of Eq. (11.37), with ↵ = 0 and � = 2 fm. Trajectories are shown for
0.02 GeV/c  q  2.0 GeV/c.

and 11.3b, respectively), for � = 2 fm and ↵ = 0. The oscillations inside
the rainbow point are similar to those found for �1(b) in Fig. 11.2. We see
in particular, that for this case too, increase of ⌘ leads to an oscillating
structure and a displacement of the rainbow point to a larger momentum
transfer.

An interesting qualitative di↵erence between these two phase shift func-
tions appears outside the rainbow, for q > qR. Whereas the cross section
corresponding to �1(b) is determined by only one stationary impact param-
eter, for �2(b) it is determined by two stationary impact parameters.

The stationary points b� x corresponding to X2(bx) for ↵ = 0 are far from
the real axis and and thus not numerically important. However, for non-
zero values of ↵ they will move closer to the real axis. In this way, the phase
shift function �2(b) may lead to cross section ratios that exhibit oscillations
outside the rainbow point. This is illustrated in Fig. 11.4 for ↵ = 2. (The
rainbow point for ↵ = 2 is given by bx,R = 1.495� and qR = 1.035⌘/�.)

Figure 11.4 also illustrates an interesting dependence of the cross section
ratio on the value of ⌘. We see that when ⌘ is small, oscillations are present,
whereas they gradually disappear as ⌘ increases. The reason for the disap-
pearance of these oscillations is related to the relative values of the imagi-
nary parts of the phase shifts, ImX2(bj x). It turns out that ImX2(b↵x) and
ImX2(b� x) are quite di↵erent in magnitude, and that di↵erence increases
rapidly with ⌘. Since F (bj x) contains, as a factor, exp[� ImX2(bj x)], it
follows that when ⌘ becomes large, one of these amplitudes (F (b↵x)) will
dominate the other one, (F (b� x)).

11.4 Gaussian type charge distribution 133

for �(b), is the generalized Gaussian charge distribution,
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which is often encountered in shell models of the light nuclei. The corre-
sponding Coulomb phase shift function is
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, (11.38)

where the exponential integral is defined as [2]
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z
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For by = 0, this gives
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for Re bx > 0, and

X2(�bx) = X2(bx), (11.41)

with
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The stationary point which constitutes a rainbow singularity can be found
by solving

X 00
2 (bx) = �
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= 0, (11.43)

provided X 0
2
(bx) is simultaneously real and positive. For ↵ = 0, the solution

may be determined as bx,R ' 1.121�, and thus

qR = 1.276
⌘

�
; (↵ = 0). (11.44)

The latter relation is qualitatively similar to Eq. (11.26). For a given
geometry of the charge distribution, the rainbow value of bx,R is again pro-
portional to ⌘ and inversely proportional to the characteristic radius. As ↵
increases from zero, the rainbow point moves slightly towards smaller mo-
mentum transfers.

In Fig. 11.3 we show the ratios of cross sections to the Rutherford cross
section and (in the inserted graphs) the trajectories of the stationary points
for �2(b) corresponding to two values of ⌘ (⌘ = 2, and 10, in Figs. 11.3a

Display ratio to Rutherford cross section:

Interference of two 
amplitudes: oscillations
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160 Smooth two-scale functions
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Figure 13.6 The derivative, Eq. (13.4), of a phase shift function yielding
three rainbow points, denoted qR1, qR2 and qR3. As the momentum transfer
is increased from zero, the number of stationary points along the real axis
is seen to go from two to four to two to none. There will be additional
points of stationary phase in the complex plane: first one, then two.

higher power of bx in front. An even higher (but odd) power could also be
considered.

An example is shown in Fig. 13.6, for A1 = A2 = 5, �1 = 1 fm and
�2 = 3 fm. It is clear that at low momentum transfers there will be two
points of stationary phase on the real axis. As the momentum transfer is
increased, at some point qR1 there will be a first rainbow. But this rainbow
di↵ers from those we have encountered so far in having a larger number
of stationary points as the momentum transfer is further increased. Imme-
diately beyond this value of momentum transfer, there are four points of
stationary phase. Thus, it is clear that for q < qR1, there must be three
points of stationary phase, one of them o↵ the real axis, in the lower half-
plane. With the parameters chosen for Fig. 13.6, the rainbow points occur
at qR1 = 0.32 GeV/c, qR2 = 0.54 GeV/c and qR3 = 0.86 GeV/c,

As the momentum transfer is further increased, the remaining two rain-
bows are encountered, with pairs of stationary points running together at
qR2 and qR3. This will be illustrated shortly.

In order to calculate the cross section, we need also the phase shift function

A case with three rainbows:

I /
✓
sin ✓

✓

◆2

(0.1)

x (0.2)

x = ±i� (0.3)

x = ±c� i� (0.4)

q (0.5)

Let particle at the position r = b+ ̂z be subject to a potential V (b+ ̂z).
It experiences a transverse force �rbV (b+ ̂z).
The integral of this force over time is given by h̄rb�(b) since
That transverse impulse then must represent the transfer of momentum
to the scattered particle,

h̄(k0 � k) = h̄q = h̄rb�(b). (0.6)

2⇥ 2 Jacobian determinant (0.7)

F (bix) =
k

i

s
�bix

qX 00(bix)
e�iqbix+iX(bix) (0.8)

Im bx < 0 (0.9)

X 0(bx) = �(bx/�
2
1)A1 exp(�b2x/�

2
1)� (b3x/�

4
2)A2 exp(�b2x/�

2
2), (0.10)

1

3 extrema > 0
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8.4 “Fermi” phase shift function 103

Figure 8.12 A comparison of the di↵erential cross sections resulting from
two phase shift functions that coincide at large parameters, but that are
di↵erent in the interior, �exp(b) = Aexp exp(�b/�) (dashed), and �F(b) =
AF/{1+exp[(b�c)/�]} (solid). The parameters satisfy Eq. (8.35). Further,
c = 3 fm, � = 0.5 fm, and AF = 2i. The trajectories of stationary points
are given in the insert.

tical potential proportional to a Woods–Saxon density function ⇢WS. If we
assume a proportionality between the optical potential and the density, then
the density, ⇢[TF] corresponding to a “Fermi” thickness function,1 TF(b) is
readily determined from the Abel integral equation, (2.6c). These densities
(both normalized to

R
d3r⇢(r) = 1) are compared in Fig. 8.14a for c = 3 fm

and � = 0.5 fm. For r >
⇠ c (i.e., in the region that is most significant in

determining the cross section) they are rather similar in shape, but di↵er
somewhat in normalization. We also note that ⇢[TF] has an enhancement in
the region of the surface. Since such an enhancement is sometimes encoun-
tered in shell-model calculations [18, 4] of nuclear densities, there could be
instances in which ⇢[TF] better represents the nuclear density than ⇢WS.
For completeness, we also compare in Fig. 8.14b the corresponding thick-

ness functions, T [⇢WS] and TF, which are quantities more closely related to
the cross section. The fact that these are more similar than the densities

1
If the range of interaction can be neglected, this is equivalent to a “Fermi” phase shift

function, �F(bx, by).

86 Exponential edge

Figure 8.1 Phase shift functions (7.1)–(7.3) with an exponential edge. The
same three phase shift functions are shown both in linear (left panel) and
logarithmic (right panel) representations.

and use the illustrative values Aexp = 100, c = 2 fm and � = 0.5 fm. At first
sight (left panel, where they are plotted linearly) they are rather di↵erent.
However, in the case of strong absorption, it is the edge region which is
important. This region is shown on a logarithmic scale, in the right panel
of Fig. 8.1. With the normalization of Eq. (8.4), the edge regions for these
three phase shift functions are essentially the same in magnitude, as will be
the envelopes of their patterns of oscillations.

Because of cylindrical symmetry, in the asymptotic approach we only need
these phase shift functions for by = 0, and therefore define

Xexp(bx) = Aexp e
�bx/� , Re bx > 0,

Xexp(�bx) = Xexp(bx), (8.5)

Xcosh(bx) =
Acosh

cosh(bx/�)
, (8.6)

XF(bx) =
AF

1 + exp[(bx � c)/�]
, Re bx > 0,

XF(�bx) = XF(bx). (8.7)

Since the pure exponential and the “Fermi” phase shift functions are not
analytic at the origin, we need to give explicit definitions for Re bx < 0.
Eqs. (8.5) and (8.7) correctly represent continuations of phase shift functions
as even-valued in bx. We can use these continuations as long as the stationary
points do not get close to the origin.

In the case of the “Fermi” phase shift function, one can easily construct
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Figure 8.1 Phase shift functions (7.1)–(7.3) with an exponential edge. The
same three phase shift functions are shown both in linear (left panel) and
logarithmic (right panel) representations.

and use the illustrative values Aexp = 100, c = 2 fm and � = 0.5 fm. At first
sight (left panel, where they are plotted linearly) they are rather di↵erent.
However, in the case of strong absorption, it is the edge region which is
important. This region is shown on a logarithmic scale, in the right panel
of Fig. 8.1. With the normalization of Eq. (8.4), the edge regions for these
three phase shift functions are essentially the same in magnitude, as will be
the envelopes of their patterns of oscillations.
Because of cylindrical symmetry, in the asymptotic approach we only need

these phase shift functions for by = 0, and therefore define

Xexp(bx) = Aexp e
�bx/� , Re bx > 0,

Xexp(�bx) = Xexp(bx), (8.5)

Xcosh(bx) =
Acosh

cosh(bx/�)
, (8.6)

XF(bx) =
AF

1 + exp[(bx � c)/�]
, Re bx > 0,

XF(�bx) = XF(bx). (8.7)

Since the pure exponential and the “Fermi” phase shift functions are not
analytic at the origin, we need to give explicit definitions for Re bx < 0.
Eqs. (8.5) and (8.7) correctly represent continuations of phase shift functions
as even-valued in bx. We can use these continuations as long as the stationary
points do not get close to the origin.
In the case of the “Fermi” phase shift function, one can easily construct
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Figure 8.12 A comparison of the di↵erential cross sections resulting from
two phase shift functions that coincide at large parameters, but that are
di↵erent in the interior, �exp(b) = Aexp exp(�b/�) (dashed), and �F(b) =
AF/{1+exp[(b�c)/�]} (solid). The parameters satisfy Eq. (8.35). Further,
c = 3 fm, � = 0.5 fm, and AF = 2i. The trajectories of stationary points
are given in the insert.

tical potential proportional to a Woods–Saxon density function ⇢WS. If we
assume a proportionality between the optical potential and the density, then
the density, ⇢[TF] corresponding to a “Fermi” thickness function,1 TF(b) is
readily determined from the Abel integral equation, (2.6c). These densities
(both normalized to

R
d3r⇢(r) = 1) are compared in Fig. 8.14a for c = 3 fm

and � = 0.5 fm. For r >
⇠ c (i.e., in the region that is most significant in

determining the cross section) they are rather similar in shape, but di↵er
somewhat in normalization. We also note that ⇢[TF] has an enhancement in
the region of the surface. Since such an enhancement is sometimes encoun-
tered in shell-model calculations [18, 4] of nuclear densities, there could be
instances in which ⇢[TF] better represents the nuclear density than ⇢WS.
For completeness, we also compare in Fig. 8.14b the corresponding thick-

ness functions, T [⇢WS] and TF, which are quantities more closely related to
the cross section. The fact that these are more similar than the densities

1
If the range of interaction can be neglected, this is equivalent to a “Fermi” phase shift

function, �F(bx, by).

Typically two points of stationary phase

Symmetrically located with respect to imaginary axis
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Technical note:

For simple functions X’(bx), may find explicit solutions for stationary points.

For “complicated” functions X’(bx), may draw a map in complex bx plane:

1. Distinguish regions where Re X’(bx) is positive vs negative
Possible solutions where Re X’(bx) > 0 

2. Draw contours where Im X’(bx) = 0

Stationary points have to lie where Re X’(bx) > 0, Im X’(bx) = 0  
and Im bx non-positive
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Figure 14.2 Regions of positive and negative values of ReX 0(bx), shown
in the complex bx-plane for the sum of two “Fermi” phase shift functions
(14.6a), with the parameters of Eq. (14.7).

 [fm]xRe b
-6 -4 -2 0 2 4 6

 [
fm

]
x

Im
 b

-4

-3

-2

-1

0

1

2

3

4

’mX

α βγ δ

Figure 14.3 Regions of positive and negative values of ReX 0(bx), shown in
the complex bx-plane for the di↵erence of two “Fermi” phase shift functions
(14.6b), with the parameters of Eq. (14.7).

we start out by showing in Figs. 14.2 and 14.3 the corresponding “maps”
of possible stationary points. These are along lines where X 0(bx) is real
( ImX 0(bx) = 0, dashed), and where ReX 0(bx) > 0 (white regions). As for
the “Fermi” phase shift function discussed in Chapter 8, there are trajec-

168 Two “Fermi” functions
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)
x

X(b
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Figure 14.1 Blue: sum and di↵erence of two “Fermi” phase shift functions
having di↵erent ranges, but the same surface thickness. Red: Single “Fermi”
phase shift function (reference).

Even within this family of functions (14.4), there are many ways of choos-
ing A0

F
, c0 and �0 relative to AF, c and �. We first explore the case � = �0,

and in a second section let � be di↵erent from �0.

14.1 Two “Fermi” phase shift functions with the same surface
thickness

14.1.1 Additional internal structure

We start out by studying the two cases

Xp(bx) =
AF

1 + exp[(bx � c)/�]
+

A0
F

1 + exp[(bx � c0)/�]
, Re bx > 0,

(14.6a)

Xm(bx) =
AF

1 + exp[(bx � c)/�]
�

A0
F

1 + exp[(bx � c0)/�]
, Re bx > 0,

(14.6b)

for purely imaginary phase shift functions with parameters

AF = i, c = 3 fm, A0
F = 0.2i, c0 = 2 fm, � = 0.5 fm. (14.7)

These phase shift functions are presented in Fig. 14.1 for A0
F

= 0.2i
(dashed blue) with A0

F
= 0 (solid red) as a reference.

In order to get an overview over possible locations of stationary points,

Technical note:

Difference of two “Fermi” functions:
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The lessons:

Slope and period will be determined by the location of the stationary points
Asymptotically, the stationary points will move towards singularities
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Scattering from the whole impact plane represented by 
contributions from a few stationary points (often just two)
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Final comments

Roy had met all the famous people of his era

He had a fantastic memory!

and could tell detailed stories about most of them

There exist recordings of him telling about the Manhattan Project
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