Few nucleons and other stories

Sebastian König

24th European Few-Body Conference

September 5, 2019

Thanks...

...to my mentors and collaborators

- P. Klos, J. Lynn, H.-W. Hammer, A. Schwenk, K. Hebeler (TU Darmstadt)
- H.W. Grießhammer (G. Washington U.), U. van Kolck (IPN Orsay, U. of Arizona)
- D. Lee, S. Bogner (FRIB, Michigan State U.)
- R.J. Furnstahl (Ohio State U), T. Papenprock (UTK)
- S. Wesolowski (Salsbury U.), D. Phillips (Ohio U.), A. Ekström (Chalmers U.)
- B. Bazak, N. Barnea (Hebrew U. Jerusalem), J. Kirscher (Manchester U.),
 M. Pavon Valderrama (Beihang U.), ...

...for funding and computing time:

- Jülich Supercomputing Centre
- Lichtenberg Cluster (Darmstadt)

Outline

[...] the Few-Body Systems Award for Young Researchers

has been assigned to you "For contributions to

effective field theories

and

finite-volume techniques

in the description of few-body systems."

Part I

The unitarity expansion

Effective field theory

- choose **degrees of freedom** approriate to energy scale
- only restricted by **symmetry**, ordered by **power counting**

- unified discussion in recent review
- even more effective d.o.f.: rotations, vibrations

Hammer, SK, van Kolck, arXiv:1906:12122

Papenbrock, NPA 852 36 (2011); ...

The unitarity expansion

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- take unitarity limit as leading order
 - ► infinite S-wave scattering lengths
 - deuteron at zero energy
- shift focus away from two-body details
- physics in universality regime

The unitarity expansion

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

$$ullet$$
 $1/a$ $< Q_A < 1/R \sim m_\pi$

$$ullet Q_A = \sqrt{2M_N B_A/A}$$

SK et al. PRL 118 202501 (2017)

Α	2	3	4	• • •	56
$\mathbf{Q_AR}$	0.3	0.5	0.8	• • •	0.9

van Kolck (2018)

The unitarity expansion

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

$$ullet$$
 $1/a$ $< Q_A < 1/R \sim m_\pi$

$$ullet Q_A = \sqrt{2 M_N B_A/A}$$

SK et al. PRL 118 202501 (2017)

Α	2	3	4	• • •	56
$\mathbf{Q_AR}$	0.3	0.5	0.8	• • •	0.9

van Kolck (2018)

- discrete scale invariance as guiding principle (Efimov effect!)
 - ▶ near equivalence to bosonic clusters, exact SU(4) symmetry

Wigner, Phys. Rev. **51** 106 (1937); Mehen et al., PRL **83** 931 (1999); Bedaque et al., NPA **676** 357 (2000) Vanasse+Phillips, FB Syst. **58** 26 (2017)

cf. also Kievsky+Gattobigio, EPJ Web Conf. **113** 03001 (2016), ... A. Kievsky, talk on Monday; D. Lee, talk on Tuesday

Efimov trimers and tetramers

- ³H as Efimov state Efimov, PLB **33** 563 (1970); Bedaque et al.(2000)
- two associated tetramers for each Efimov state

Hammer+Platter, EPJA 32 13 (2007); von Stecher, JPB 43 101002 (2010); ...

- at unitarity
 - \bullet $B_4/B_3 \simeq$ 4.611, $B_{4*}/B_3 \simeq$ 1.002

Deltuva, PRA 82 040701 (2010)

- in ⁴He
 - ground state at $B_{lpha}/B_{H}\simeq$ 3.66
 - resonance at $B_{lpha*}/B_H \simeq 1.05$ (where $B_H = 7.72$)

Unitarity prescription

SK et al., PRL 118 202501 (2017)

(1) describe strong force with contact interaction

$$C_0 = \underbrace{C_0^{(0)}}_{ ext{leading order (LO)}} + C_0^{(1)} + \cdots$$

- ullet momentum cutoff Λ gives "smearing"
- fit $C_0^{(0)}$ to get $a=\infty$ in both NN S-wave channels

(2) fix Efimov spectrum to physical triton energy

pionless LO three-body force

- Bedaque et al., NPA 676 357 (2000)
- triton as "anchor" at each order

(3) include in perturbation theory

- finite a, Coulomb
- range corrections
- all further higher-order corrections

Leading order has a single parameter, all the rest is a perturbation!

Unitarity expansion summary

- novel approach to few-nucleon systems
 - ► leading order at unitarity limit (infinite scattering length)
 - everything else as perturbative fine structure

SK et al., PRL 118 202501 (2017); SK, JPG 44 064007 (2017)

	LO	NLO*	N ² LO	exp.
² H	0	0	1.4(1.1)	2.22
³ H	8.48	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72	7.72
⁴ He	39(12)	30(9)		28.3

- part of greater nuclear simplification trend
- C. Elster, talk on Monday; D. Lee, talk on Tuesday
- ullet demonstrates feasability of perturbative EFT calculations for A>3
 - unified Faddeev/Faddeev-Yakubowsky framework

Kamada + Glöckle, NPA **548** 205 (1992); Platter (2005)

Recent developments

Charge radii

ullet calculate charge form factors $F_C(q)=\langle\Psi|
ho(q)|\Psi
angle \leadsto \langle r^2
angle=-rac{1}{6}rac{d^2}{dq^2}F_C$, q o 0

- ullet point charge radii: subtract effects from r_p and r_n
- triton result in excellent agreement with previous pionless calculations
 - ► range corrections known to be large

Vanasse, PRC **95** 024002 (2017); Vanasse+Phillips, FB Syst. **58** 26 (2017)

Charge radii

ullet calculate charge form factors $F_C(q)=\langle\Psi|
ho(q)|\Psi
angle\leadsto\langle r^2
angle=-rac{1}{6}rac{d^2}{dq^2}F_C$, $\,q o0$

- ullet point charge radii: subtract effects from r_p and r_n
- triton result in excellent agreement with previous pionless calculations
 - ► range corrections known to be large

Vanasse, PRC **95** 024002 (2017); Vanasse+Phillips, FB Syst. **58** 26 (2017)

NLO four-body force

- ullet full next-to-leading order includes range corrections $\sim C_2 \, (k^2 + k'^2)$
- cancel in trinucleon energy splitting, but not in general
- four-boson energy does not converge with cutoff
- promotion of four-body force to NLO

Bazak, Kirscher, SK et al., PRL 122 143001 (2019)

- inclusion of four-body force stabilized five- and six-body system as well
- general prediction for promotion of many-body forces (for bosons!)

see talk by J. Kirscher tomorrow

Part II

Few-body states in finite volume

Finite periodic boxes

- physical system enclosed in finite volume (box)
- typically used: periodic boundary conditions
- leads to volume-dependent energies

Lüscher formalism

- physical properties encoded in the vol.-dependent energy levels!
- infinite-volume S-matrix governs discrete finite-volume spectrum
- finite volume used as theoretical tool

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Few-body states in finite volume

Bound states

- exponential volume dependence
- physics encoded in prefactor and fall-off scale

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Resonances

- continuum discretized into states with power-law volume dependence
- resonances show up as avoided crossings

Two-body bound states

- ullet consider bound state with energy $E_B=-\kappa^2/(2\mu)$
- ullet binding momentum κ corresponds to intrinsic length scale
- finite volume affects the binding energy: $E_B(L)$

- ullet for S-wave states, one finds $\Delta B(L)\sim -|\gamma|^2 \expig(-\kappa Lig)/L+\cdots$, $oldsymbol{\gamma}={\sf ANC}$ Lüscher, Commun. Math. Phys. 104 177 (1986); ...
- ullet in general, the prefactor is a polynomial in $1/\kappa L$ SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)
- asymptotic wavefunction determines volume dependence

Two-body bound states

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

- peridic boundary: sum over nearest neigbour overlapping wavefunctions
- contribution to integral only inside potential range
- ullet use Schrödinger equation to eliminate potential: $\psi({f r})V({f r})=[\Delta_r-\kappa^2]\psi({f r})$

Two-body bound states

$$\Delta B(L) = \sum_{|\mathbf{n}|=1} \int d^3 r \, \psi_B^*(\mathbf{r}) \, V(\mathbf{r}) \, \psi_B(\mathbf{r} + \mathbf{n}L) + \mathcal{O}(e^{-\sqrt{2}\kappa L})$$

- peridic boundary: sum over nearest neigbour overlapping wavefunctions
- contribution to integral only inside potential range
- ullet use Schrödinger equation to eliminate potential: $\psi({f r})V({f r})=[\Delta_r-\kappa^2]\psi({f r})$
- ullet only asymptotic tail matters: $\psi({f r})\sim \gamma imes \exp{\left(-\kappa r
 ight)}/r$

Now consider the general case

N particles

d spatial dimensions

N-body setup

ullet 2- up to N-body interactions, can be local or non-local

$$V_{1\cdots N}(\mathbf{r}_1,\cdots\mathbf{r}_N;\mathbf{r}_1',\cdots\mathbf{r}_N') = \sum_{i< j} W_{i,j}(\mathbf{r}_i,\mathbf{r}_j;\mathbf{r}_i',\mathbf{r}_j') 1_{
olimins_i,j} + \cdots$$

- ullet all with finite range, set $R=\max\{R_{i,j},\cdots\}$
- ullet assume asymptotically large volume: $L\gg R$

General result

Separate A particles and factorize wavefunction

SK + Lee, PLB **779** 9 (2018)

$$egin{aligned} \psi_N^B(\mathbf{r}_1, \cdots \mathbf{r}_N) &\sim \psi_A^B(\mathbf{r}_1, \cdots \mathbf{r}_A) \psi_{N-A}^B(\mathbf{r}_{A+1}, \cdots \mathbf{r}_N) \ &\qquad imes (\kappa_{A|N-A} r_{A|N-A})^{1-d/2} \, K_{d/2-1}(\kappa_{A|N-A} r_{A|N-A}) \end{aligned}$$

$$\Delta B_N(L) \propto (\kappa_{A|N-A}L)^{1-d/2} K_{d/2-1}(\kappa_{A|N-A}L) \sim \exp(-\kappa_{A|N-A}L)/L^{(d-1)/2}$$

- smallest $\kappa_{A|N-A} = \sqrt{2\mu_{A|N-A}(B_N B_A B_{N-A})}$ governs volume dependence
- this assumes both clusters to be bound (otherwise: power-law correction factors)
- prefactor determined by asymptotic normalization constant (ANC)

Numerical results

• consider one particle separated from the rest

- diagonalization of discretized Hamiltonian
- interaction = short-range Gaussian two-body potentials
 - $L\gg R$ well satisfied for $L\gtrsim 5$
- ullet all quantities in natural units with mass =1
- straight lines indicate excellent agreement with analytical result

Finally: Few-body resonances

Finite-volume resonance signatures

Lüscher formalism

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta) \;\;,\;\; \eta=\left(rac{Lp}{2\pi}
ight)^2 \;\;,\;\; p=pig(E(L)ig)$$

Lüscher, NPB 354 531 (1991); ...

- ullet finite volume o momentum quantization o discrete energy levels
- resonance contribution → avoided level crossing

Finite-volume resonance signatures

Lüscher formalism

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta) \;\;,\;\; \eta=\left(rac{Lp}{2\pi}
ight)^2 \;\;,\;\; p=pig(E(L)ig)$$

Lüscher, NPB 354 531 (1991); ...

- ullet finite volume o momentum quantization o discrete energy levels
- resonance contribution → avoided level crossing

Finite-volume resonance signatures

Lüscher formalism

$$p\cot\delta_0(p)=rac{1}{\pi L}S(\eta) \;\;,\;\; \eta=\left(rac{Lp}{2\pi}
ight)^2 \;\;,\;\; p=pig(E(L)ig)$$

Lüscher, NPB 354 531 (1991); ...

- ullet finite volume o momentum quantization o discrete energy levels
- resonance contribution → avoided level crossing

Discrete variable representation

Need calculation of several few-body energy levels

difficult to achieve with QMC methods

Klos et al., PRC **94** 054005 (2016)

use a Discrete Variable Representation (DVR)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

- basis functions localized at grid points
- potential energy matrix diagonal
- kinetic energy matrix sparse...
- ...or implemented via Fast Fourier Transform

1.0

- periodic boundary condistions ↔ plane waves as starting point
- implementation for large-scale calculations
 - ► numerical framework scales from laptop to HPC clusters

SK et al., PRC **98** 034004 (2018)

Two-body check

Use model potential to produce S-wave resonance

shifted gaussian barrier

$$ullet V(r) = V_0 \exp iggl(- \Bigl(rac{r-a}{R_0}\Bigr)^2 iggr)$$

• tune parameters to generate resonances

Two-body check

Use model potential to produce S-wave resonance

• shifted gaussian barrier

$$ullet V(r) = V_0 \exp iggl(- \Bigl(rac{r-a}{R_0}\Bigr)^2 \Bigr)$$

tune parameters to generate resonances

Phase shifts and S-matrix pole

Two-body check

Use model potential to produce S-wave resonance

• shifted gaussian barrier

$$ullet V(r) = V_0 \exp iggl(- \Bigl(rac{r-a}{R_0}\Bigr)^2 iggr)$$

• tune parameters to generate resonances

Finite-volume spectra

Three-body check

Study established three-body resonance from literature

Fedorov et al., Few-Body Syst. 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

- three bosons with mass m=939.0 MeV, potential = sum of two Gaussians
- three-body resonance at

$$lacksquare -5.31-i0.12\,$$
 MeV (Blandon et al.)

$$ightharpoonup -5.96-i0.40\,\,{
m MeV}$$
 (Fedorov et al.)

ullet fit inflection point(s) to extract resonance energy: $E_R=-5.32(1)$ MeV

SK et al., PRC 98 034004 (2018)

Genuine three-body resonance

Three-boson system

- shifted Gaussian two-body potential
- no two-body bound state!
- add short-range three-body force

Three-boson system

- shifted Gaussian two-body potential
- no two-body bound state!
- add short-range three-body force

Three-boson system

- shifted Gaussian two-body potential
- no two-body bound state!
- add short-range three-body force

Three-boson system

- shifted Gaussian two-body potential
- no two-body bound state!
- add short-range three-body force

Three-boson system

- shifted Gaussian two-body potential
- no two-body bound state!
- add short-range three-body force

possible to move three-body state ↔ spatially localized wavefunction

Finite-volume summary

Bound states

SK + Lee, PLB **779** 9 (2018)

- leading volume dependence known for arbitrary bound states
- reproduces known results, checked numerically
- calculate ANCs, single-volume extrapolations possible!
- applications to lattice QCD, EFT, cold-atomic systems

Resonances

SK et al., PRC 98 034004 (2018)

- explicit proof of concept for up to four particles
- efficient large-scale numerical implementation (DVR)
- different concrete physics applications
 - ► few-neutron systems, alpha clusters, atomic resonances, ...

Thank you

Backup slides

Implementation

Unified (2-, 3-, 4-body) numerical framework

Two-nucleon system

- ullet separable regulator for contact interactions: $V=C_0|g
 angle\langle g|$
- can be solved analytically to get scattering amplitudes

Three-nucleon system

- ullet Faddeev equations: $|\psi
 angle = G_0 t_2 P |\psi
 angle + G_0 t_2 |\psi_3
 angle$
- used to fit three-body force

Four-nucleon system

- ullet Faddeev-Yakubowsky equations: two components $|\psi_{A,B}
 angle$
- need full wavefunction for perturbation theory:

$$ullet \ |\Psi
angle = (1{-}P_{34}{-}PP_{34})(1+P)|\psi_A
angle + (1{+}P)(1{+}P)|\psi_B
angle$$

The cutoff

- ullet increasing the momentum cutoff Λ decreases interaction range
- ullet RG invariance: fix $C=C(\Lambda)$ to keep input observables invariant

- ullet predicted observables should converge as Λ increases...
- ...but individual contributions generally do not, e.g.:

Λ/MeV	800	1000	1200	1400
$E_{ m kin}/{ m MeV}$	+113.67	+140.58	+168.44	+197.09
$E_{ m pot}/{ m MeV}$	-139.77	-167.47	-195.76	-224.62

Three-body force running

- ullet three-body force $D_0^{(0)}(\Lambda)$ depends on a single parameter Λ_*
- fit to triton binding energy (in this case)

ullet not much shift in Λ_* due to unitarity limit

Trinucleon energy difference

- at LO ³H and ³He are degenerate (exact isospin symmetry)
- ullet Coulomb correction enters together with $1/a_{s,pp}$ at NLO

 ΔE_3 : -

• predict binding energy difference

	LO	NLO	exp.
³ H	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72
		((red = input)

SK et al. PRL 118 202501 (2017)

- range corrections cancel at NLO
 - ▶ leading order is isospin symmetric
 - ullet small isospin breaking $r_{pp}
 eq r_{np}$ (5%) relegated to next higher order

SK et al. JPG 43 055106 (2016)

Tjon line

Correlation between ³H and ⁴He binding energies

- originally observed comparing different potential models
- well reproduced by unitarity expansion
- ullet perturbativeness of 1/a persists off the physical point

Tjon, PLB 56 217 (1975)

Cluster separation

consider one particle separated from all others

$$S = \{ (\mathbf{r}_1, \cdots \mathbf{r}_N) : |\mathbf{r}_1 - \mathbf{r}_i| > R \quad orall i = 2, \cdots N \}$$

ullet look at Hamiltonian restricted to S

$$\left.\hat{H}\right|_{S} = \sum_{i=2}^{N} \left[\hat{K}_{i} - \hat{K}_{2\cdots N}^{\mathrm{CM}} + \hat{V}_{2\cdots N}
ight] + \hat{K}_{1|N-1}^{\mathrm{rel}} \qquad ext{no interaction } \hat{V}_{1}...!$$

- sepration ansatz: $\Psi({f r}_1,\cdots{f r}_N)=\sum_{lpha}\,f_lpha({f r}_2,\cdots{f r}_N)\,\,g_lpha({f r}_{1|N-1})$
 - ullet lowest f_0 is eigenstate of sub-Hamiltonian with energy $-B_{N-1}$
 - g_0 is Bessel function with scale set by $B_N B_{N-1}$

Analytical examples

Three bosons at unitarity

• two-body interaction with zero range and infinite scattering length

$$egin{aligned} \Delta B_3(L) &\propto (\kappa_{1|2}L)^{-1/2} K_{1/2}(\kappa_{1|2}L) P(\kappa_{1|2}L) \ &\sim \exp\Bigl(-\sqrt{rac{4mB_3}{3}}L\Bigr) \left(\sqrt{rac{4mB_3}{3}}L
ight)^{-1} P(\kappa_{1|2}L) \end{aligned}$$

same exp. dependence as exact result ✓

Meißner et al., PRL 114 091602 (2015)

• by comparison, power-law factor $P(x) = x^{-1/2}$

N particles with N-body interaction only

- ullet spinless N-particle bound state with only an N-particle interaction
- $ullet \ \psi(\mathbf{r}_1,\cdots) \propto (\kappa_{1|N-1} r_{1|N-1})^{1-d(N-1)/2} \ K_{d(N-1)/2-1}(\kappa_{1|N-1} r_{1|N-1})$
- again leads exactly to expected exp. dependence ✓
- ullet read off power-law factor $P(x)=x^{-d(N-2)/2}$

More complicated example

Typically one channel dominates, but not necessarily...

- ullet take an attractive two-body force $\leadsto B_2 < 0$
- add a repulsive three-body force → no three-body bound state
- add attractive four-body force $\rightsquigarrow B_4 < 0$

- $\kappa_{
 m fit} = 1.318 \qquad \qquad \kappa_{2|2} = 1.282$
- contributions from two channels clearly visible
- ullet asymptotic slope in good agreement with 2|2 separation

Further possibilities

(a) Extract ANC from volume dependence

$$\Delta B_N(L) = rac{(-1)^{\ell+1} \sqrt{rac{2}{\pi}} f(d) |oldsymbol{\gamma}|^2}{\mu_{A|N-A}} \kappa_{A|N-A}^{2-d/2} L^{1-d/2} K_{d/2-1}(\kappa_{A|N-A} L)$$

- ullet ANC γ relevant for low-energy capture reactions
- notoriously difficult to measure experimentally (especially for charged systems)
- possible to extract ANC for arbitrary cluster systems

(b) Extrapolate from single-volume calculations

- get N-body and (N-A)-body wavefunctions
 - ► look along fixed direction
 - mind periodic boundary condition
- ullet $\kappa_{A|N-A}$ obtained from same fit
- \hookrightarrow directly calculate $\Delta B_N(L)$

Broken symmetry

• the finite volume breaks the spherical symmetry of the system

- irreducible representations of SO(3) are reducible with respect to O
 - finite subgroup of SO(3)
 - number of elements = 24
 - five irreducible representations

Γ	A_1	A_2	E	T_1	T_2
$\mathrm{dim}\Gamma$	1	1	2	3	3

Cubic projection

Cubic projector

$$\mathcal{P}_{\Gamma} = rac{\mathrm{dim}\Gamma}{24} \sum_{R \in \mathcal{OO}} \chi_{\Gamma}(R) D_n(R) \ , \ \chi_{\Gamma}(R) = \mathrm{character}$$

Johnson, PLB 114 147 (1982)

- ullet $D_n(R)$ realizes a cubic rotation R on the n-body DVR basis
- $\bullet \ \ \, \leadsto \, permutation/inversion \,\, of \,\, relative \,\, coordinate \,\, components$
- ullet indices are wrappen back into range $-N/2,\ldots,N/2-1$

ullet numerical implementation: $\hat{H}
ightarrow \hat{H} \,+\, \lambda (1-\mathcal{P}_{\Gamma}) \;\;,\;\; \lambda \gg E$

DVR construction

Basic idea

- ullet start with some initial basis; here: plane waves $\phi_i(x) = rac{1}{\sqrt{L}} \mathrm{exp} \Big(\mathrm{i} rac{2\pi i}{L} x \Big)$
- ullet consider (x_k,w_k) such that $\sum\limits_{k=-N/2}^{N/2-1}w_k\,\phi_i^*(x_k)\phi_j(x_k)=\delta_{ij}$

DVR states

- ullet $\psi_k(x)$ localized at x_k , $\psi_k(x_j) = \delta_{kj}/\sqrt{w_k}$
- ullet note duality: momentum mode $\phi_i \leftrightarrow$ spatial mode ψ_k

DVR features

Potential energy is diagonal

$$egin{aligned} \langle \psi_k | V | \psi_l
angle &= \int \mathrm{d}x \, \psi_k(x) \, V(x) \, \psi_l(x) \ &pprox \sum_{n=-N/2}^{N/2-1} w_n \, \psi_k(x_n) \, V(x_n) \, \psi_l(x_n) = V(x_k) \delta_{kl} \end{aligned}$$

- no need to evaluate integrals
- ullet number N of DVR states controls quadrature approximation

Kinetic energy is simple (via FFT) or sparse (in d > 1)

- plane waves are momentum eigenstates
 - evaluate kinetic energy in momentum space: $\hat{T}|\psi_k
 angle\sim \mathcal{F}^{-1}\otimes\hat{p}^2\otimes\mathcal{F}|\psi_k
 angle$
- ullet $\langle \psi_k | T | \psi_l
 angle =$ known in closed form
 - ► replicated for each coordinate, with Kronecker deltas for the rest

DVR basis states

- construct DVR basis in simple relative coordinates
 - ▶ because Jacobi coord. would complicate the boundary conditions
- separate center-of-mass energy (choose ${f P}={f 0}$)
- mixed derivatives in kinetic energy operator

ullet general DVR state for n particles in d dimensions

$$ullet \ket{s} = \ket{(k_{1,1},\cdots,k_{1,d}),\cdots,(k_{n-1,1},\cdots)}; ext{spins} \in B$$

ullet basis size: $\dim B = (2S+1)^n imes N^{d imes(n-1)}$

(Anti-)symmetrization and parity

Permutation symmetry

- ullet for each $|s
 angle \in B$, construct $|s
 angle_{\mathcal{A}} = \mathcal{N} \sum_{p \in S_n} \mathrm{sgn}(p) \, D_n(p) |s
 angle$
 - ullet then $|s
 angle_{\mathcal{A}}$ is antisymmetric: $\mathcal{A}|s
 angle_{\mathcal{A}}=|s
 angle_{\mathcal{A}}$
 - ullet for bosons, leave out $\mathrm{sgn}(p) \leadsto$ symmetric state
 - ullet $D_n(p)|s
 angle=$ some other $|s'
 angle\in B$, modulo periodic boundary

This operation partitions the orginal basis!

Reduced basis

- each state appears in at most one (anti-)symmetric combination
 - ▶ no need for expensive symmetry eigenspace determination
- ullet significant reduction of basis size: $N o N_{
 m reduced} pprox N/n!$
- ullet parity (with projector $\mathcal{P}_{\pm}=1\pm\mathcal{P}$) can be handled analogously

Three fermions

Consider shifted Gaussian potential now for three fermions

- add spin d.o.f., but no spin dependence in potential
 - ▶ total spin S good quantum number (fix S_z to filter states)
 - ► can also still consider simple cubic irreps.

- ullet all lowest states found to be in T_1^- irrep. (\sim P-wave state)
- ullet extract S=1/2 resonance at $E_R=5.7(2)$

Four-boson resonance

Now look at four bosons...

ullet still the same shifted Gaussian potential $(V_0=2.0)$

- clear horizontal sequence of avoided level crossings
 - (supposedly narrow) resonance at $E_R = 7.31(8)$