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Outline
 
 

[...] the Few-Body Systems Award for Young Researchers

has been assigned to you "For contributions to

e�ective �eld theories

and

�nite-volume techniques

in the description of few-body systems."
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Part I
The unitarity expansion
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Hammer, SK, van Kolck, arXiv:1906:12122

Papenbrock, NPA 852 36 (2011); ...

E�ective �eld theory
choose degrees of freedom approriate to energy scale

only restricted by symmetry, ordered by power counting

 
 
 
 
 
 
 
 
 
 
 

unified discussion in recent review

even more effective d.o.f.: rotations, vibrations

Chiral EFT

Halo/Cluster EFT

Pionless 
EFT
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chiral expansion

Q/MQCD

unitarity limit:

pionless expansion

Q/

take unitarity limit as leading order

shift focus away from two-body details

physics in universality regime

 

The unitarity expansion
 

Capture gross features at leading order, build up

the rest as perturbative “fine structure!”

 
 
 

infinite S-wave scattering lengths► 

deuteron at zero energy► 
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 iron not much different from 4He

van Kolck (2018)

A  2   3   4  56

 0.3 0.5 0.8     0.9

SK et al. PRL 118 202501 (2017)

  

 

The unitarity expansion
 

Capture gross features at leading order, build up

the rest as perturbative “fine structure!”

Nuclear sweet spot

 

1/a < <QA 1/R ∼ mπ

=QA 2 /AMN BA
− −−−−−−−−

√

⋯

RQA ⋯

↪
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 iron not much different from 4He

van Kolck (2018)

A  2   3   4  56

 0.3 0.5 0.8     0.9

cf. also Kievsky+Gattobigio, EPJ Web Conf. 113 03001 (2016), ...
A. Kievsky, talk on Monday; D. Lee, talk on Tuesday

SK et al. PRL 118 202501 (2017)

  

 

The unitarity expansion
 

Capture gross features at leading order, build up

the rest as perturbative “fine structure!”

Nuclear sweet spot

 

 
discrete scale invariance as guiding principle (Efimov effect!)

1/a < <QA 1/R ∼ mπ

=QA 2 /AMN BA
− −−−−−−−−

√

⋯

RQA ⋯

↪

Wigner, Phys. Rev. 51 106 (1937); Mehen et al., PRL 83 931 (1999); Bedaque et al., NPA 676 357 (2000)
Vanasse+Phillips, FB Syst. 58 26 (2017)

near equivalence to bosonic clusters, exact SU(4) symmetry 

 
► 
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Hammer+Platter, EPJA 32 13 (2007); von Stecher, JPB 43 101002 (2010); ...

TUNL nuclear data    

E�mov trimers and tetramers
 
3H as Efimov state    Efimov, PLB 33 563 (1970); Bedaque et al.(2000)

two associated tetramers for each Efimov state 

deep

shallow

at unitarity

in 4He

Deltuva, PRA 82 040701 (2010)
 4.611,  1.002► / ≃B4 B3 / ≃B4∗ B3

ground state at  3.66► / ≃Bα BH

resonance at  1.05 (where )► / ≃Bα∗ BH = 7.72BH
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SK et al., PRL 118 202501 (2017)

Bedaque et al., NPA 676 357 (2000)
pionless LO three-body force

triton as "anchor" at each order

Unitarity prescription
 
(1) describe strong force with contact interaction

momentum cutoff  gives "smearing"

fit  to get  in both NN S-wave channels

(2) fix Efimov spectrum to physical triton energy

(3) include in perturbation theory

finite , Coulomb

range corrections

all further higher-order corrections

= + + ⋯C0 C
(0)
0

 
leading order (LO)

C
(1)
0

Λ

C
(0)
0 a = ∞

a
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Leading order has a single parameter,
all the rest is a perturbation!
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SK et al., PRL 118 202501 (2017); SK, JPG 44 064007 (2017)

C. Elster, talk on Monday; D. Lee, talk on Tuesday

  LO    NLO*  N2LO exp.

2H 0 0 1.4(1.1)  2.22 

3H 8.48 8.48 8.48 8.48

3He 8.48 7.6(2) 7.72 7.72

4He 39(12) 30(9) 28.3

Unitarity expansion summary
novel approach to few-nucleon systems

 

 

 

part of greater nuclear simplification trend

demonstrates feasability of perturbative EFT calculations for 

leading order at unitarity limit (infinite scattering length)► 

everything else as perturbative fine structure► 

A> 3

Kamada + Glöckle, NPA 548 205 (1992); Platter (2005)

unified Faddeev/Faddeev-Yakubowsky framework► 
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Recent developments
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Charge radii
calculate charge form factors  , 

 
 
 
 
 
 
 
 
 
 

point charge radii: subtract effects from  and 

triton result in excellent agreement with previous pionless calculations

(q) = ⟨Ψ|ρ(q)|Ψ⟩FC ⇝ ⟨ ⟩ = −r2 1

6

d2

dq2
FC q → 0

rp rn

Vanasse, PRC 95 024002 (2017); Vanasse+Phillips, FB Syst. 58 26 (2017)

range corrections known to be large► 
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Vanasse, PRC 95 024002 (2017); Vanasse+Phillips, FB Syst. 58 26 (2017)

range corrections known to be large► 
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Bazak, Kirscher, SK et al., PRL 122 143001 (2019)

NLO four-body force
full next-to-leading order includes range corrections 

cancel in trinucleon energy splitting, but not in general

four-boson energy does not converge with cutoff

promotion of four-body force to NLO

 
inclusion of four-body force stabilized five- and six-body system as well

general prediction for promotion of many-body forces (for bosons!)

see talk by J. Kirscher tomorrow

∼ ( + )C2 k
2

k
′2
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Part II
Few-body states in finite volume
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Finite periodic boxes
 

physical system enclosed in finite volume (box)

typically used: periodic boundary conditions

leads to volume-dependent energies

 
 
 

Lüscher formalism

physical properties encoded in the vol.-dependent energy levels!

infinite-volume S-matrix governs discrete finite-volume spectrum

finite volume used as theoretical tool
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Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

Few-body states in �nite volume
Bound states

exponential volume dependence

physics encoded in prefactor and fall-off scale

Resonances

continuum discretized into states with power-law volume dependence

resonances show up as avoided crossings
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SK et al., PRL 107 112001 (2011); Annals Phys. 327, 1450 (2012)

Lüscher, Commun. Math. Phys. 104 177 (1986); ...

Two-body bound states
consider bound state with energy 

binding momentum  corresponds to intrinsic length scale

finite volume affects the binding energy: 

for S-wave states, one finds ,  = ANC

in general, the prefactor is a polynomial in 

asymptotic wavefunction determines volume dependence

= − /(2μ)EB κ2

κ

(L)EB

ΔB(L) ∼ −|γ exp( − κL)/L + ⋯|2 γ

1/κL
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Two-body bound states

peridic boundary: sum over nearest neigbour overlapping wavefunctions

contribution to integral only inside potential range

use Schrödinger equation to eliminate potential: ψ(r)V (r) = [ − ]ψ(r)Δr κ2
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Two-body bound states

peridic boundary: sum over nearest neigbour overlapping wavefunctions

contribution to integral only inside potential range

use Schrödinger equation to eliminate potential: 

only asymptotic tail matters: 

ψ(r)V (r) = [ − ]ψ(r)Δr κ2

ψ(r) ∼ γ × exp(−κr)/r
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Now consider the general case
 particles

 spatial dimensions

N

d
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N-body setup
- up to -body interactions, can be local or non-local

all with finite range, set 

assume asymptotically large volume: 

W1,2 W3,5

3

4

5

W4,5W3,4 W3,4,5

L

2 N

( , ⋯ ; , ⋯ ) = ( , ; , ) + ⋯V1⋯N r1 rN r
′
1 r

′
N ∑

i<j

Wi,j ri rj r
′
i r

′
j 1 ,i j

R = max{ , ⋯}Ri,j

L ≫ R
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SK + Lee, PLB 779 9 (2018)

General result
Separate  particles and factorize wavefunction

smallest  governs volume dependence

this assumes both clusters to be bound (otherwise: power-law correction factors)

prefactor determined by asymptotic normalization constant (ANC)

A

( , ⋯ ) ∼ ( , ⋯ ) ( , ⋯ )ψB
N

r1 rN ψB
A

r1 rA ψB
N−A

rA+1 rN

× ( ( )κA|N−ArA|N−A)1−d/2 Kd/2−1 κA|N−ArA|N−A

Δ (L) ∝ ( L ( L)  ∼ exp(− L)/BN κA|N−A )1−d/2 Kd/2−1 κA|N−A κA|N−A L(d−1)/2

=κA|N−A 2 ( − − )μA|N−A BN BA BN−A

− −−−−−−−−−−−−−−−−−−−−
√
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consider one particle separated from the rest

Numerical results
 

 

 
diagonalization of discretized Hamiltonian

interaction = short-range Gaussian two-body potentials

all quantities in natural units with mass = 1

straight lines indicate excellent agreement with analytical result

 well satisfied for ► L ≫ R L ≳ 5
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Finally: Few-body resonances
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Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

Finite-volume resonance signatures
Lüscher formalism

 
finite volume  momentum quantization  discrete energy levels

resonance contribution  avoided level crossing

p cot (p) = S(η) , η = , p = p(E(L))δ0
1

πL
( )

Lp

2π

2

→ →

⇝
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Lüscher, NPB 354 531 (1991); ...

Wiese, NPB (Proc. Suppl.) 9 609 (1989); ...

Finite-volume resonance signatures
Lüscher formalism

 
finite volume  momentum quantization  discrete energy levels
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1
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⇝
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Klos et al., PRC 94 054005 (2016)

well established in quantum chemistry, suggested for nuclear physics by Bulgac+Forbes, PRC 87 051301 (2013)

basis functions localized at grid points

potential energy matrix diagonal

kinetic energy matrix sparse...

...or implemented via Fast Fourier Transform

Discrete variable representation
Need calculation of several few-body energy levels

difficult to achieve with QMC methods

use a Discrete Variable Representation (DVR)

periodic boundary condistions  plane waves as starting point

implementation for large-scale calculations

↔

SK et al., PRC 98 034004 (2018)numerical framework scales from laptop to HPC clusters► 
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shifted gaussian barrier

tune parameters to generate resonances

Two-body check
Use model potential to produce S-wave resonance

► V (r) = exp(−( )V0
r − a

R0
)

2

p. 27



shifted gaussian barrier

tune parameters to generate resonances

Two-body check
Use model potential to produce S-wave resonance

 

Phase shifts and S-matrix pole

► V (r) = exp(−( )V0
r − a

R0
)

2

p. 28



shifted gaussian barrier

tune parameters to generate resonances

Two-body check
Use model potential to produce S-wave resonance

 

Finite-volume spectra

► V (r) = exp(−( )V0
r − a

R0
)

2
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Fedorov et al., Few-Body Syst. 33 153 (2003); Blandon et al., PRA 75 042508 (2007)

SK et al., PRC 98 034004 (2018)

Three-body check
Study established three-body resonance from literature
 

three bosons with mass  = 939.0 MeV, potential = sum of two Gaussians

three-body resonance at

 
 

fit inflection point(s) to extract resonance energy:  MeV

m

 MeV (Blandon et al.)► −5.31 − i0.12

 MeV (Fedorov et al.)► −5.96 − i0.40

= −5.32(1)ER
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SK et al., PRC 98 034004 (2018) 

shifted Gaussian two-body potential

no two-body bound state!

add short-range three-body force

Genuine three-body resonance
Three-boson system
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SK et al., PRC 98 034004 (2018) 
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p. 30



SK et al., PRC 98 034004 (2018) 

shifted Gaussian two-body potential
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SK et al., PRC 98 034004 (2018) 

shifted Gaussian two-body potential

no two-body bound state!

add short-range three-body force

Genuine three-body resonance
Three-boson system
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SK et al., PRC 98 034004 (2018) 

shifted Gaussian two-body potential

no two-body bound state!

add short-range three-body force

Genuine three-body resonance
Three-boson system

 

possible to move three-body state  spatially localized wavefunction↔
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SK + Lee, PLB 779 9 (2018)

SK et al., PRC 98 034004 (2018)

Finite-volume summary
Bound states

leading volume dependence known for arbitrary bound states

reproduces known results, checked numerically

calculate ANCs, single-volume extrapolations possible!

applications to lattice QCD, EFT, cold-atomic systems

 

Resonances

explicit proof of concept for up to four particles

efficient large-scale numerical implementation (DVR)

different concrete physics applications

few-neutron systems, alpha clusters, atomic resonances, ...► 
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Thank you
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Backup slides
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separable regulator for contact interactions: 

can be solved analytically to get scattering amplitudes

Faddeev equations: 

used to fit three-body force 

Faddeev-Yakubowsky equations: two components 

need full wavefunction for perturbation theory:

Implementation
Unified (2-, 3-, 4-body) numerical framework

Two-nucleon system

 
 

Three-nucleon system

 
Four-nucleon system

V = |g⟩⟨g|C0

|ψ⟩ = P |ψ⟩ + | ⟩G0t2 G0t2 ψ3

| ⟩ψA,B

► |Ψ⟩ = (1− −P )(1 + P)| ⟩ + (1+P)(1+ )| ⟩P34 P34 ψA P
~

ψB
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The cuto�
increasing the momentum cutoff  decreases interaction range

RG invariance: fix  to keep input observables invariant

predicted observables should converge as  increases...

...but individual contributions generally do not, e.g.:

Λ

C = C(Λ)

Λ

Λ / MeV 800 1000 1200 1400

/ MeVEkin +113.67 +140.58 +168.44 +197.09

/ MeVEpot −139.77 −167.47 −195.76 −224.62
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Three-body force running
three-body force  depends on a single parameter 

fit to triton binding energy (in this case)

not much shift in  due to unitarity limit

(Λ)D
(0)
0 Λ∗

Λ∗
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SK et al. PRL 118 202501 (2017)

at LO 3H and 3He are degenerate (exact isospin symmetry)

Coulomb correction enters together with  at NLO

predict binding energy difference
 

(red = input)

  LO   NLO  exp. 
3H 8.48 8.48 8.48

3He 8.48 7.6(2) 7.72

Trinucleon energy di�erence

 

 
 

range corrections cancel at NLO

1/as,pp

leading order is isospin symmetric► 

SK et al. JPG 43 055106 (2016)
small isospin breaking  (5%) relegated to next higher order► ≠rpp rnp
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Tjon, PLB 56 217 (1975)

Tjon line
Correlation between 3H and 4He binding energies

 

originally observed comparing different potential models

well reproduced by unitarity expansion

perturbativeness of  persists off the physical point1/a
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no interaction !

Cluster separation
consider one particle separated from all others

S

look at Hamiltonian restricted to 

 

sepration ansatz:   

S = {( , ⋯ ) : | − | > R ∀i = 2, ⋯ N}r1 rN r1 ri

S

V̂ 1⋯

Ψ( , ⋯ ) =r1 rN ∑
α

( , ⋯ )fα r2 rN ( )gα r1|N−1

lowest  is eigenstate of sub-Hamiltonian with energy ► f0 −BN−1

 is Bessel function with scale set by ► g0 −BN BN−1
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Meißner et al., PRL 114 091602 (2015)

Analytical examples
Three bosons at unitarity

two-body interaction with zero range and infinite scattering length

same exp. dependence as exact result ✓

by comparison, power-law factor 

 particles with -body interaction only

spinless -particle bound state with only an -particle interaction

again leads exactly to expected exp. dependence ✓

read off power-law factor 

Δ (L) ∝ ( L ( L)P( L)B3 κ1|2 )−1/2K1/2 κ1|2 κ1|2

∼ exp(− L) P( L)
4mB3

3

− −−−
√ ( L)4mB3

3

− −−−
√

−1

κ1|2

P(x) = x−1/2

N N

N N

ψ( , ⋯) ∝ ( ( )r1 κ1|N−1r1|N−1 )1−d(N−1)/2 Kd(N−1)/2−1 κ1|N−1r1|N−1

P(x) = x−d(N−2)/2

p. 41



      

More complicated example
Typically one channel dominates, but not necessarily...

take an attractive two-body force 

add a repulsive three-body force  no three-body bound state

add attractive four-body force 

 
contributions from two channels clearly visible

asymptotic slope in good agreement with  separation

⇝ < 0B2

⇝

⇝ < 0B4

= 1.318κfit = 1.282κ2|2

2|2
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get -body and -body wavefunctions

 obtained from same fit

 directly calculate 

Further possibilities
(a) Extract ANC from volume dependence

ANC  relevant for low-energy capture reactions

notoriously difficult to measure experimentally (especially for charged systems)

possible to extract ANC for arbitrary cluster systems  
 

(b) Extrapolate from single-volume calculations

Δ (L) = ( L)BN

(−1 f(d)|γ)ℓ+1 2
π

−−
√ |2

μA|N−A

κ
2−d/2
A|N−A

L1−d/2Kd/2−1 κA|N−A

γ

N (N−A)

look along fixed direction► 

mind periodic boundary condition► 

κA|N−A

↪ Δ (L)BN
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finite subgroup of 

number of elements = 24

five irreducible representations

             

Broken symmetry
the finite volume breaks the spherical symmetry of the system

rotation group SO(3) cubic group O 

irreducible representations of  are reducible with respect to 

 

SO(3) O

SO(3)
Γ A1 A2 E T1 T2

dimΓ 1 1 2 3 3
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Johnson, PLB 114 147 (1982)

Cubic projection
Cubic projector

 realizes a cubic rotation  on the -body DVR basis

 permutation/inversion of relative coordinate components

indices are wrappen back into range 

 
 
 

  

 
 

numerical implementation:     

= (R) (R) , (R) = characterPΓ
dimΓ

24
∑

R∈OO

χΓ Dn χΓ

(R)Dn R n

⇝

−N/2, … , N/2 − 1

⟶

→Ĥ Ĥ + λ(1 − )PΓ , λ ≫ E
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DVR construction
 
Basic idea

start with some initial basis; here: plane waves 

consider  such that 

 
 

unitary trans.

 
 

DVR states

 localized at , 

note duality: momentum mode   spatial mode 

(x) = exp(i x)ϕi

1

L
−−

√

2πi

L

( , )xk wk ( ) ( ) =∑
k=−N/2

N/2−1

wk ϕ∗
i xk ϕj xk δij

⟶

= ( )Uki wk
−−

√ ϕi xk

(x)ψk xk ( ) = /ψk xj δkj wk
−−

√

ϕi ↔ ψk
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DVR features
Potential energy is diagonal

no need to evaluate integrals

number  of DVR states controls quadrature approximation

Kinetic energy is simple (via FFT) or sparse (in )

plane waves are momentum eigenstates

 known in closed form

⟨ |V | ⟩ = ∫ dx (x)V (x) (x)ψk ψl ψk ψl

≈ ( )V ( ) ( )∑
n=−N/2

N/2−1

wn ψk xn xn ψl xn = V ( )xk δkl

N

d > 1

evaluate kinetic energy in momentum space: ► | ⟩ ∼ ⊗ ⊗ F | ⟩T̂ ψk F
−1 p̂

2
ψk

⟨ |T | ⟩ =ψk ψl

replicated for each coordinate, with Kronecker deltas for the rest► 
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DVR basis states
construct DVR basis in simple relative coordinates

separate center-of-mass energy (choose )

mixed derivatives in kinetic energy operator

 
general DVR state for  particles in  dimensions

basis size: 

because Jacobi coord. would complicate the boundary conditions► 

P = 0

=xi ∑
i=1

n

Uijri

=Uij

⎧

⎩
⎨

δij

−1
1/n

for i, j < n

for i < n, j = n

for i = n

n d

► |s⟩ = |( , ⋯ , ), ⋯ , ( , ⋯); spins⟩ ∈ Bk1,1 k1,d kn−1,1

dimB = (2S + 1 ×)n N d×(n−1)
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(Anti-)symmetrization and parity
Permutation symmetry

for each , construct 

This operation partitions the orginal basis!

Reduced basis
each state appears in at most one (anti-)symmetric combination

significant reduction of basis size: 

parity (with projector ) can be handled analogously

|s⟩ ∈ B |s = N sgn(p) (p)|s⟩⟩A ∑
p∈Sn

Dn

then  is antisymmetric: ► |s⟩A A|s = |s⟩A ⟩A
for bosons, leave out   symmetric state► sgn(p) ⇝

 some other , modulo periodic boundary► (p)|s⟩ =Dn | ⟩ ∈ Bs′

no need for expensive symmetry eigenspace determination► 

N → ≈ N/n!Nreduced

= 1 ±PP±
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Three fermions
Consider shifted Gaussian potential now for three fermions

add spin d.o.f., but no spin dependence in potential

all lowest states found to be in  irrep. (  P-wave state)

extract  resonance at 

total spin  good quantum number (fix  to filter states)► S Sz

can also still consider simple cubic irreps.► 

T
−

1 ∼

S = 1/2 = 5.7(2)ER
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Four-boson resonance
Now look at four bosons...

still the same shifted Gaussian potential ( )

clear horizontal sequence of avoided level crossings

= 2.0V0

(supposedly narrow) resonance at ► = 7.31(8)ER
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