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A unified description of intrinsic and relative degrees of freedom



Weakly bound nuclei:
A unified description of intrinsic and relative degrees of freedom



Weakly bound nuclei:

 The particles do not interact with each other, but

through an average mean-field.

 The complex N-body wave function is replaced by a

Slater determinant.

A unified description of intrinsic and relative degrees of freedom



Weakly bound nuclei:

 The particles do not interact with each other, but

through an average mean-field.

 The complex N-body wave function is replaced by a

Slater determinant.

 The mean-field determines

the interaction with the

loosely bound nucleons.

Three-body problem

A unified description of intrinsic and relative degrees of freedom



Weakly bound nuclei:

 The particles do not interact with each other, but

through an average mean-field.

 The complex N-body wave function is replaced by a

Slater determinant.

 The mean-field determines

the interaction with the

loosely bound nucleons.

 The distorted mean-

field modifies the core-

nucleon interaction and

the wave function of the

valence nucleons.

Three-body problem

 The presence of

the loosely bound

nucleons distorts

the mean-field.

Self-consistent calculation

A unified description of intrinsic and relative degrees of freedom



Weakly bound nuclei:

 Some formal hints about the formalism

 The case of 26O

 Proton dripline: 70Kr

 Approaching the dripline: Ca isotopes

 Summary and possible extensions
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Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei

D. Vautherin and D.M. Brink

PRC 5 (1972) 626
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D. Hove et al., JPG 45, 073001 (2018)



The case of 26O:

24O is, to a large extent, a spherical nucleus



The case of 26O:

Experimental information about 26O is available



The case of 26O:

Adiabatic Expansion Method

16 neutron states 

occupied by the 

neutrons in the 24O 

core.

Valence neutrons

s, p, d, and f waves are 

included in the calculation

SLy4 SkM* Sk3

Ed3/2
0.85 0.83 1.23

Ed3/2
(HF) -0.96 -1.15 -0.53
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The case of 26O:
Sudden approximation



The case of 26O:
Sudden approximation

Once the NN interaction has been 

chosen, the invariant mass 

spectrum is fully determined.



Two-proton capture: 70Kr

A.M. Rogers et al., PRL 106, 252503 (2011)
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Two-proton capture: 70Kr

Capture mechanism 

D. Hove et al., PLB 782, 42 (2018)

 Sequential capture through the
f5/2 resonance in 69Br at 0.6 MeV.



Summary:
The model presented here treats the many-body core and the two valence particles self-consistently:

 The mean-field determines

the interaction with the

loosely bound nucleons.

 The distorted mean-

field modifies the core-

nucleon interaction and

the wave function of the

valence nucleons.

Three-body problem

 The presence of

the loosely bound

nucleons distorts

the mean-field.

Self-consistent calculation

Core: Spherical Skyrme Hartree-Fock

 Core deformation?

 Finite range NN interactions?

 odd-odd nuclei?

Three-body calculation: Adiabatic expansion

 Three-body force from the mean field?

 Generalization to more than one

cluster and more than two valence
nucleons
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