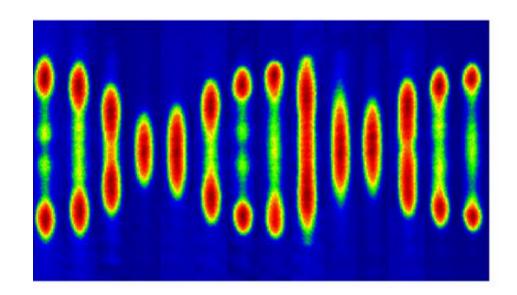


Energy dependence of 3-body recombination in 1D

Laura Zundel Josh Wilson Neel Malvania Lin Xia Jean-Felix Riou David Weiss



Supported by the ARO and NSF

Our motivation

Generically, many-body systems thermalize: they approach a most probable (highest entropy) state

Observable

time

integrable systems are an exception: there are extra conserved quantities depends only on bath temperature (canonical) or

total energy (microcanonical).

the stat mech answer

Are they mathematical singular points, or are they the center of a region where stat mech does not apply?

When does the premise of stat mech hold?

Outline: 1D 3-body recombination

- A. Experiments with ground state 1D Bose gases: the Lieb-Liniger model and integrable many-body systems
- B. Out-of-equilibrium 1D gases: Quantum Newton's Cradles (QNCs)
- C. Measurement of 3-body recombination in 1D
- D. Modeling 3-body loss to determine $K_3(E_{cm})$.

Keep track of all 3-body recombination collisions.

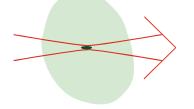
Compare the experiment to theory.

Optical Lattices

Calculable, versatile atom traps

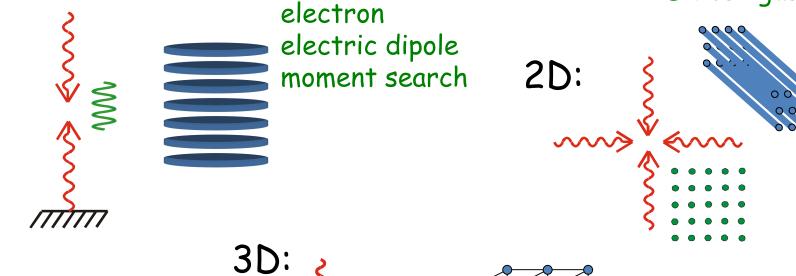
Far from resonance, no light scattering

$$U_{AC} \propto Intensity$$



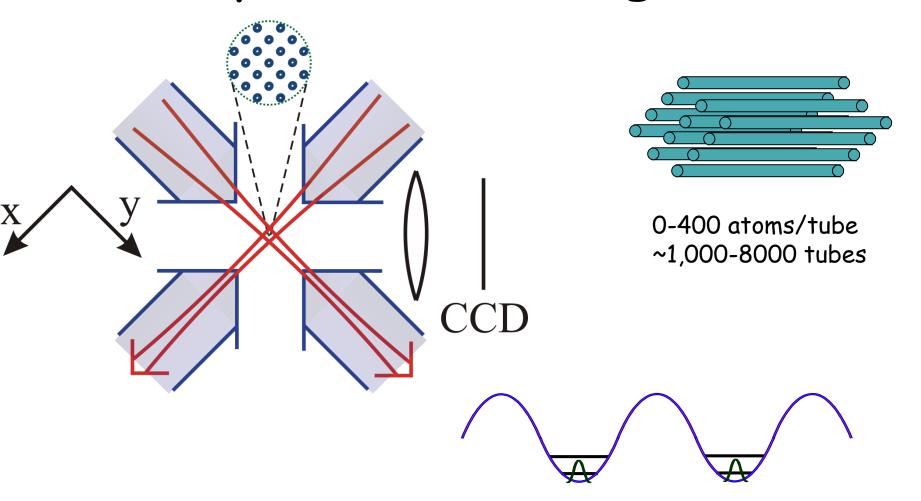
1D Bose gases

1D:



quantum computing (Maxwell demon for >50 atoms)

Experimental 1D gases



For 1D:all energies $< \hbar w_{\perp}$; negligible tunneling

<u>1D Bose gases with variable point-like</u> <u>interactions</u>

Elliot Lieb and Werner Liniger, 1963: Exact solutions for 1D Bose gases with arbitrary $\delta(z)$ interactions

A Bethe ansatz approach yields solutions parameterized by $\gamma = \frac{m}{\sqrt{2}}$

 $\gamma \approx \frac{4u_{3D}}{a^2 n_{1D}}$

$$\gamma = \frac{\mathbf{m} \quad \mathbf{g}_{1\mathrm{D}}}{\hbar^2} \quad \mathbf{n}_{1\mathrm{D}}$$

 $H_{1D} = \sum_{j=1}^{N} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z_j^2} + \sum_{i < j} g_{1D} \delta(z_i - z_j)$

Lieb & Liniger, Phys Rev 130 1605 (1963)

L-L is integrable \Rightarrow many extra constants of motion. Wavefunctions and all local properties are exactly calculable.

Maxim Olshanii, 1998: Adaptation to real atoms

$$a_{3D}$$
 = 3D scattering length
 a_{\perp} = transverse oscillator length

Eq., Normalized Local Pair Correlations Theory: Gangardt & Shlyapnikov, PRL 90 010401 By photo-association (2003)Expt: Kinoshita, Wenger, DSW, PRL 95 190406 (2005) g_2 of the 3D BEC is 0.8 0.7 0.6 0.5 $g_2(0)$ 0.4 0.3 0.2 *** 0.1 Pauli exclusion 0 for bosons .3 10 1 3 γ_{eff}

<u>Collisions in 1D</u>

For identical particles, reflection looks just like transmission !

Two-body collisions between distinct bosons cannot change their momentum distribution.

1D Bose gases with δ -fn interactions are integrable systems. $p_a, p_b, p_c \longrightarrow p_a, p_b, p_c$ (no "diffractive" collisions)

→ they do not: ergodically sample phase space ≈ become chaotic ≈ thermalize

Imperfect δ -fn interactions lift integrability. Do 1D gases then eventually thermalize?

<u>Approach to studying</u> <u>thermalization</u>

Take the system out of equilibrium and follow time evolution of the momentum distribution.

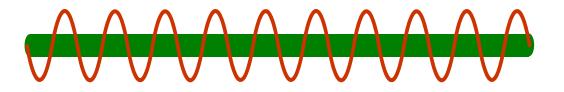
<u>Processes that drive</u> <u>momentum evolution in 1D</u>

- Density-independent heating: mostly spontaneous emission from lattice light
- Heating from 3-body loss
- Diffractive 3-body collisions: evaporative cooling

J.F Riou, A. Reinhard, L. Zundel, D.S. Weiss, PRA **86**, 033412 (2012)

L.A. Zundel, J.M. Wilson, N. Malvania, L. Xia, J.F Riou, D.S. Weiss, PRL 122, 013402 (2019)

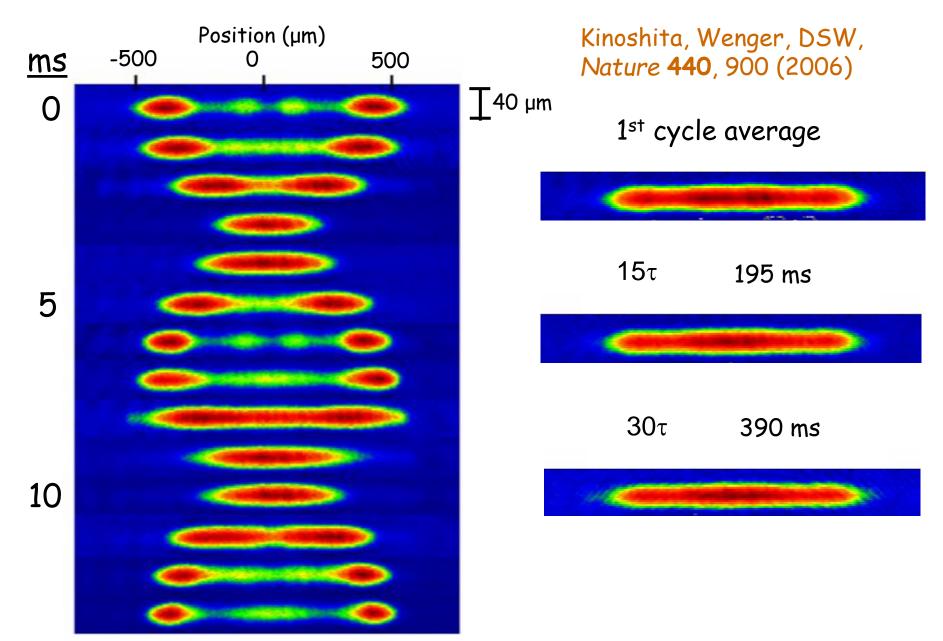
<u>Creating Non-Equlibrium</u> <u>Distributions</u>



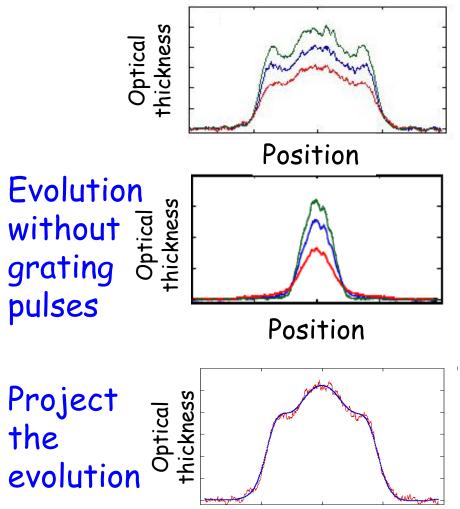
2 standing wave pulses Obtical thickness 1.51.

Wang, et al., PRL 94, 090405 (2005)

Quantum Newton's Cradles



$\begin{array}{l} \mbox{1st cycle average} \\ \mbox{15 τ distribution} \\ \mbox{40 τ distribution} \\ \mbox{Lattice depth: 63 } E_r \end{array} \begin{array}{l} \mbox{Steady-state Momentum} \\ \mbox{Distributions} \\ \mbox{Distributions} \end{array} \end{array}$



Position

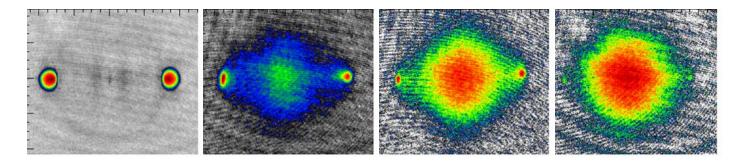
After dephasing (**prethermalization**), the 1D gases reach a steady state that is not thermal equilibrium

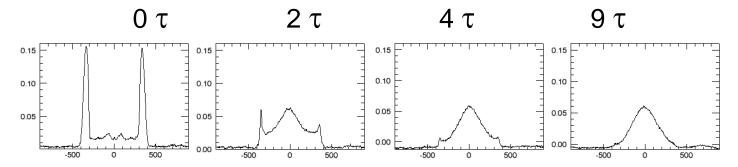
Each atom continues to oscillate with the amplitude it has after dephasing

Lower limit: thousands of **2-body** collisions without thermalization

What happens to the QNC in 3D?

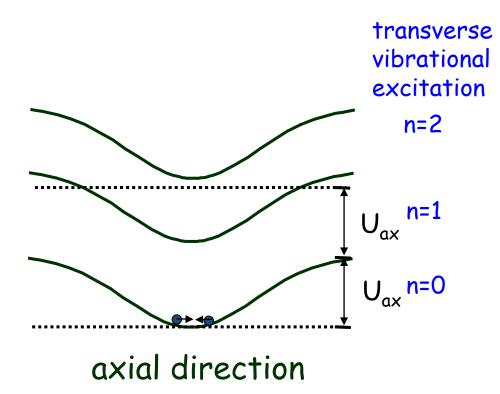
Thermalization is known to occur in ~3 collisions.





Enforced 1D dynamics

The blue-detuning of the 2D lattice is critical.



Ground band atoms never have enough energy to pairwise collisionally excite to higher bands.

Excitation to higher bands leads to loss and/or "heating".

We have a higher density, reduced noise, improved momentum measurements compared to our original QNC.

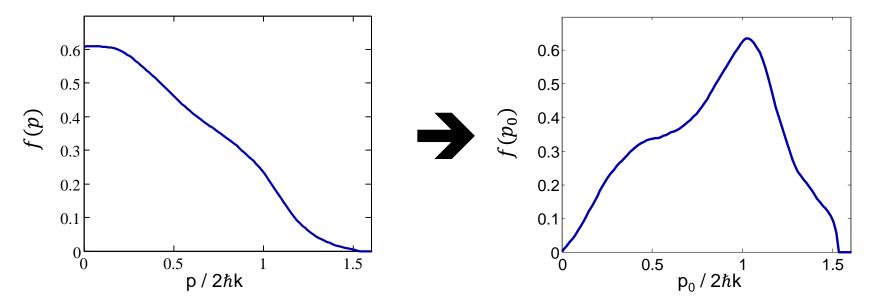
Distribution of peak momenta

Atom energy:
$$\frac{p_0^2}{2m} = \frac{p^2}{2m} + U(z)$$

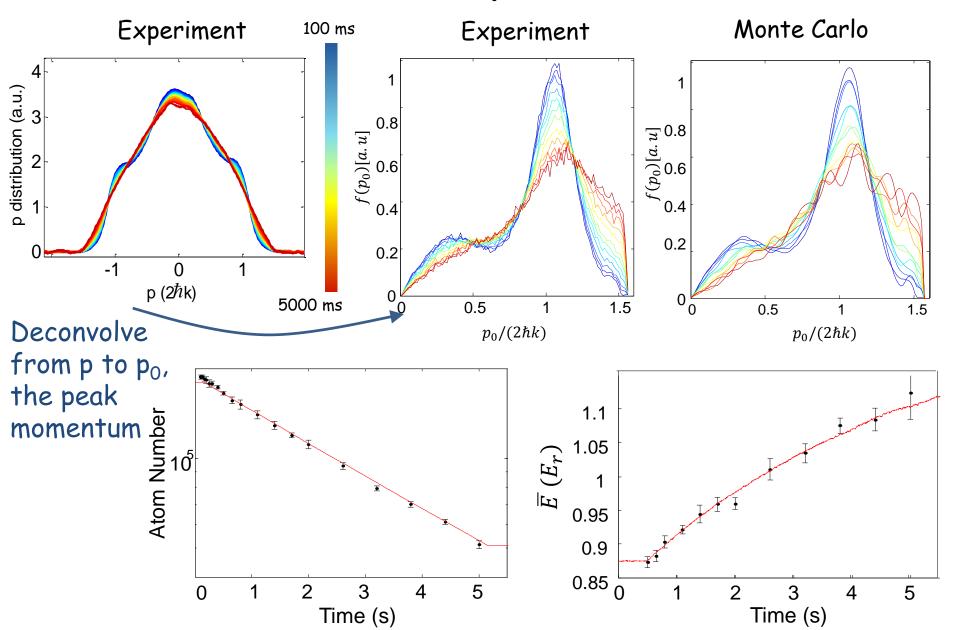
The QNC has enough energy that the axial motion is ~semi-classical

(half) the momentum distribution, measured by TOF

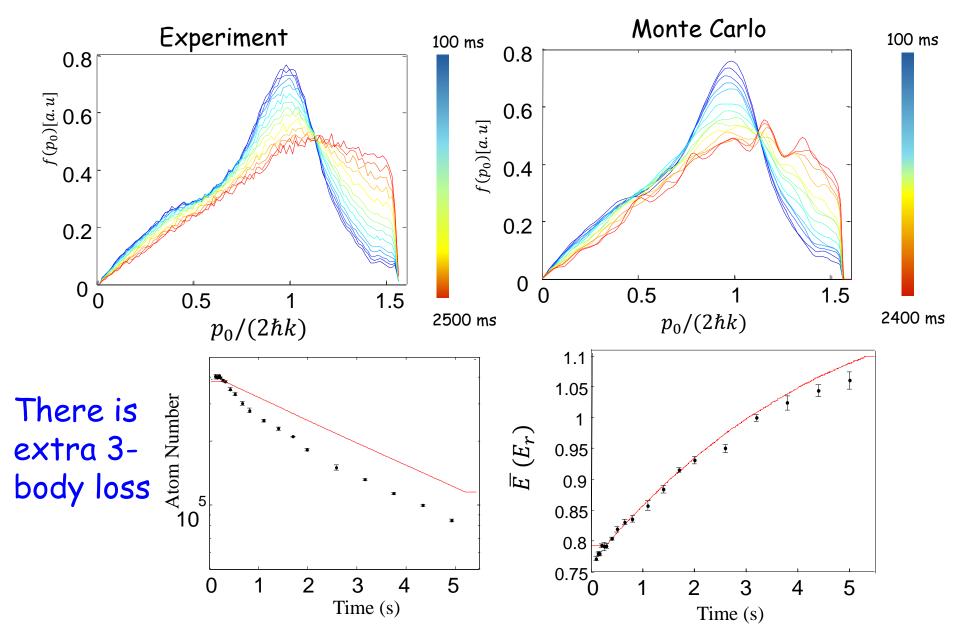
The momentum amplitude, p_o , is the conserved quantity.



Low density evolution

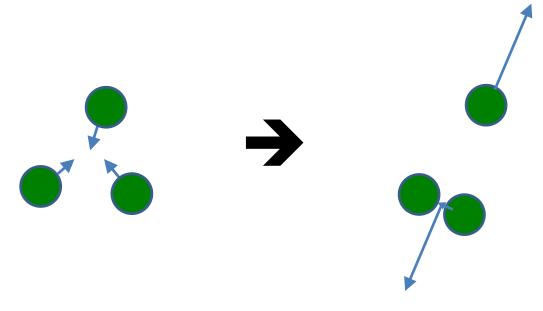


High density evolution



3-body recombination

Esry, Greene, Burke, PRL **83**, 1751 (1999)



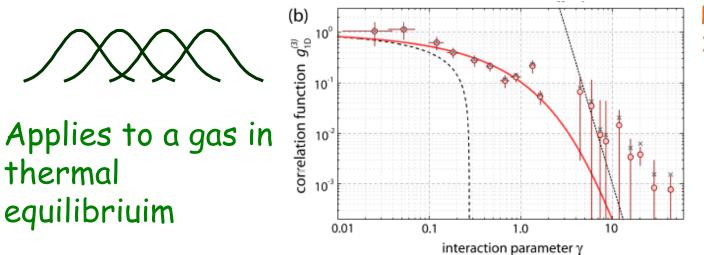
In 3D at low energy, the loss coefficient, K_3 , is energy independent.

<u>Suppression of 3-body</u> recombination in 1D

Two reasons for suppression

Laburthe Tolra et al.

Reduced g₃(0) due to increased correlations PRL 92, 190401 (2004)



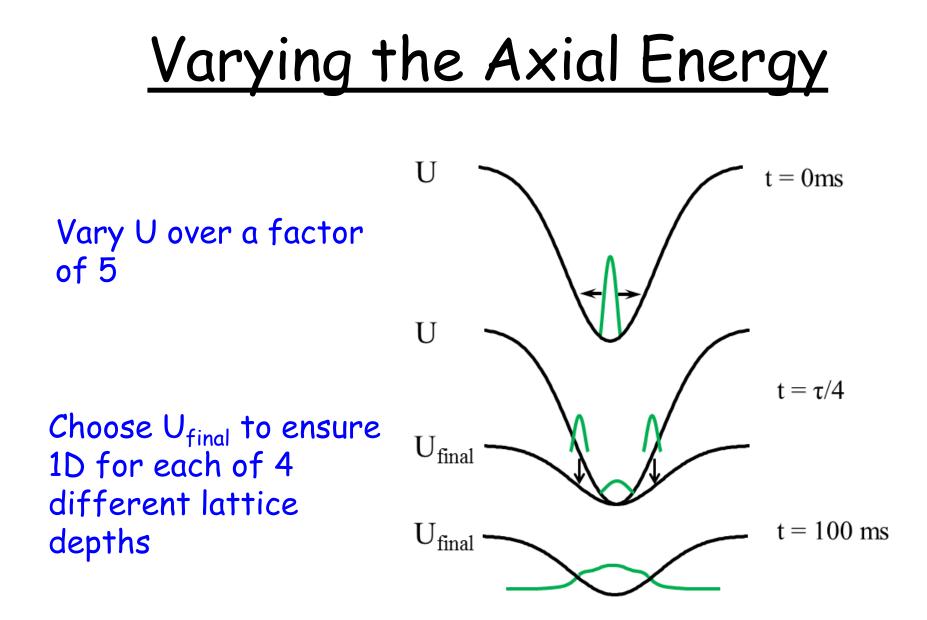
Haller et al. PRL **107**, 230404 (2011)

Threshold scattering for isolated 3-body collisions

 $K_3 \propto \frac{\hbar}{\mu} (ka)^6$

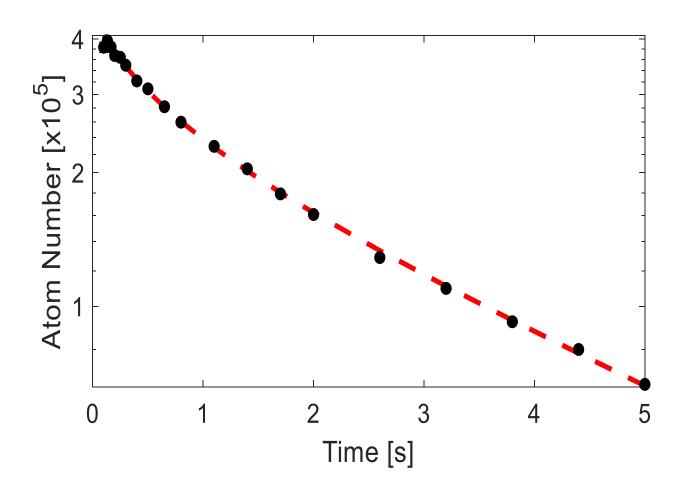
Mehta, Esry, Greene PRA **76**, 022711 (2007)

Related to Efimov physics

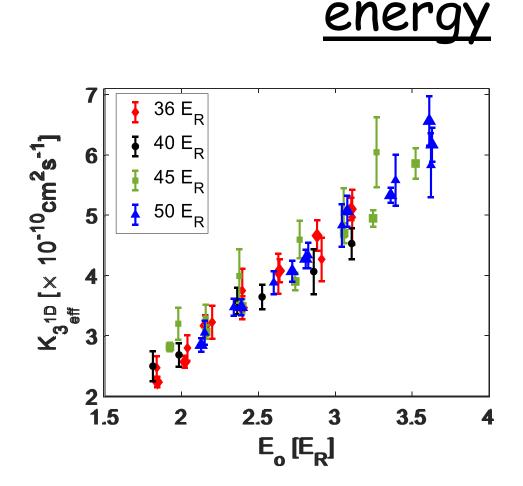


Simple fit of 3-body loss

To compare the 3-body loss for all data sets in one figure, we fit loss data to: $\frac{dN}{dt} = -K_1N - K_{3eff}^{1D} \int n_{1D}^3 dz$



The loss depends on the average



L.A. Zundel, J.M. Wilson, N. Malvania, L. Xia, J.F Riou, D.S. Weiss, PRL 122, 013402 (2019)

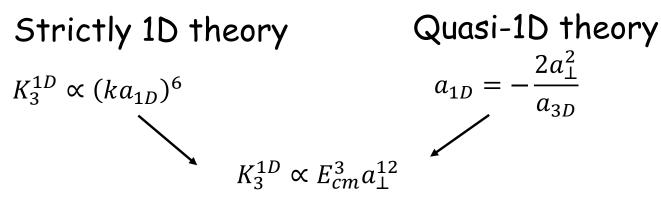
Two different initial densities, 4 different lattice depths, ~7 different initial average energies

More energetic ensembles of atoms have a higher K_{3eff} ^{1D} In 3D, this curve would be a horizontal line.

<u>Adapting a strictly 1D theory</u>

Mehta, Esry, Greene PRA **76**, 022711 (2007)

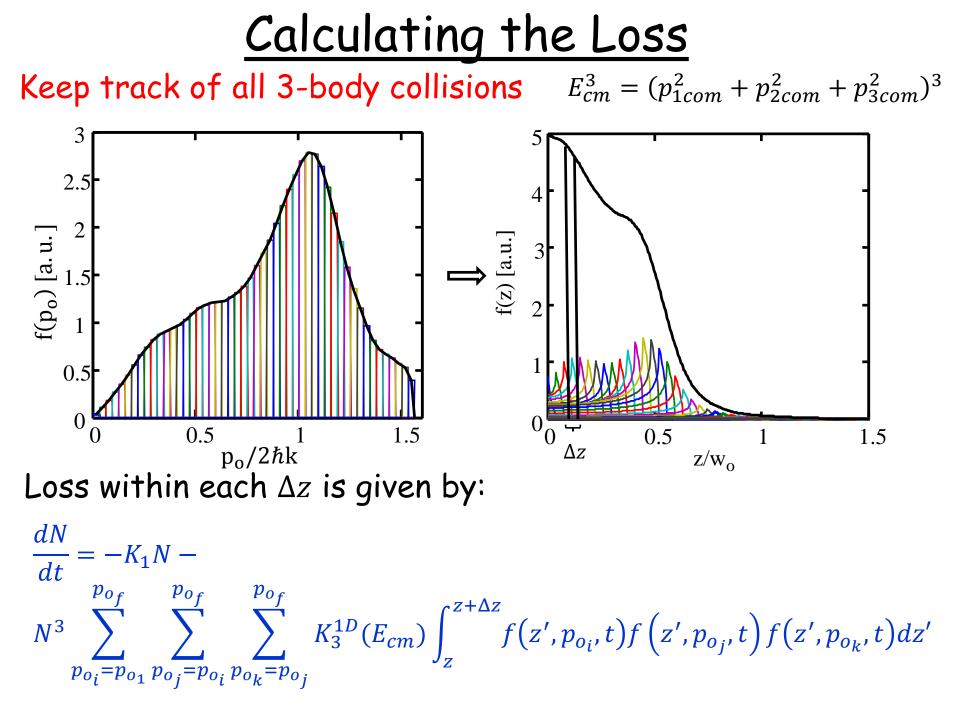
Olshanii, PRL **81**, 938 (1998)



Bound K_3^{1D} by the thermal value of K_3^{3D} : $K_{3_{max}}^{1D} = \frac{6K_3^{3D}}{3\pi^2 a_1^4}$

Introduce E_l to characterize crossover between 1D and 3D.

$$K_{3}^{1D}(E_{cm}) = C' a_{\perp}^{12} E_{cm}^{3} \left(\frac{C' a_{\perp}^{12} E_{cm}^{3}}{K_{3_{max}}^{1D} \left(\frac{E_{cm}}{E_{cm} + E_{l}} \right)} + 1 \right)$$



Fitting the Loss

48 decay curves

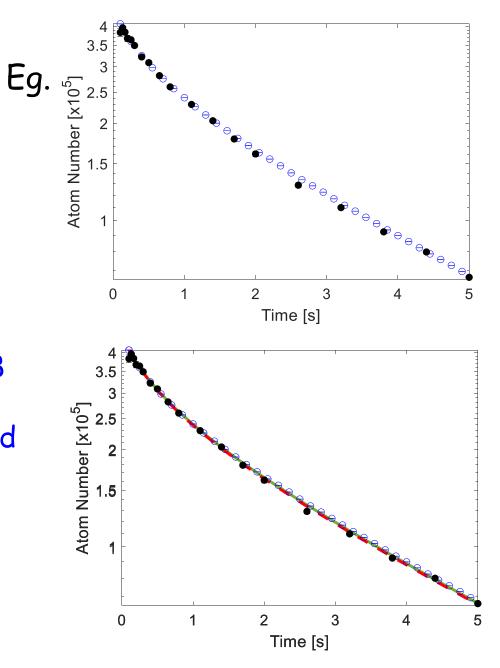
Free parameters:

- C'
- E_l

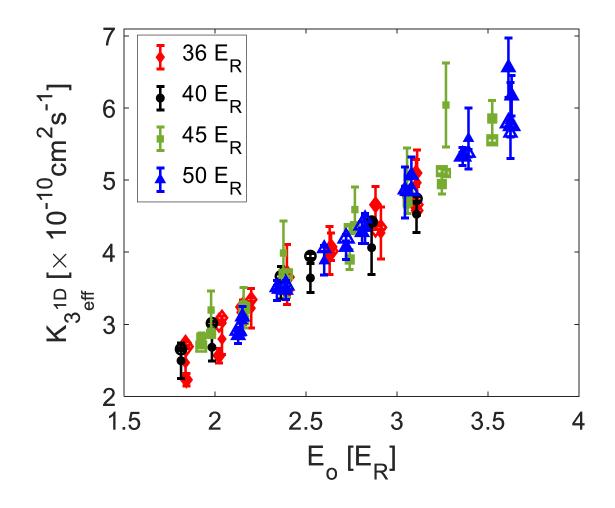
Do a global fit of all the data.

We the take each of the 48 global fit decay curves and do a least squares fit to find K_{3eff} for that curve (as we did for the experimental decay curves).

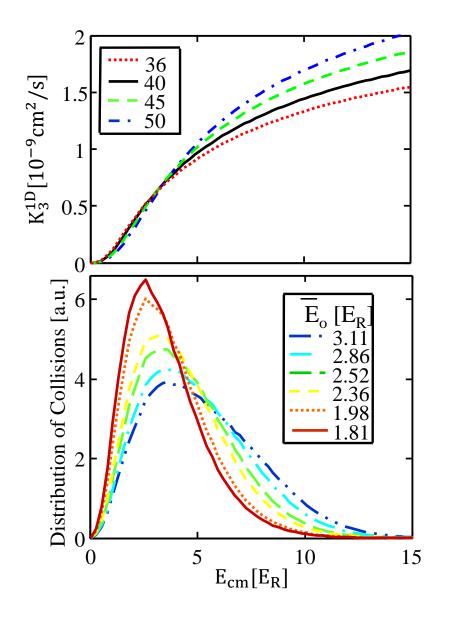
$$\frac{dN}{dt} = -K_1 N - K_{3eff}^{1D} \int n_{1D}^3 dz$$



All the data with all the theory



The results of the fit



 K_3^{1D} rolls over to K_3^{3D} , which dramatically reduces the dependence of loss on lattice depth.

Much of the loss occurs in this rollover region.

 E_{cm} > 20 E_{R} is needed for any transverse excitation.

The system is 1D until the inelastic process occurs.

 $K_{3}^{1D}(E_{cm})$ or $g_{3}(0)$?

Isolated 3-body collisions

$$K_3^{1D} \propto E_{cm}^{3}$$

Correlated gas

$$K_3^{1D} \propto g_3(0) K_3^{3D}$$

They can't simultaneously apply.

Two views of the same underlying physics?

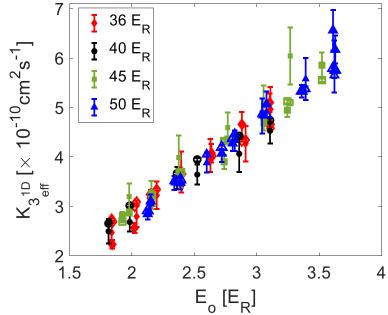
<u>Summary</u>

ID Bose gas experiments are close enough to integrable systems that it is possible to keep track of all three body collisions.

 We have seen the predicted strong dependence of 3-body recombination on collision energy.

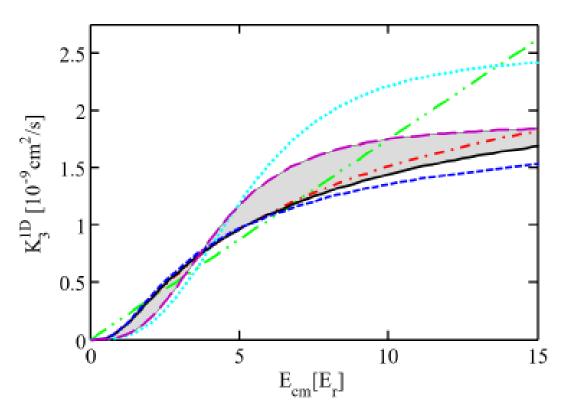
The results fit a model with two free parameters.

More theory is needed.



With regard to thermalization near integrability, we see the onset at a rate that suggests stat mech holds.

Robustness of the model



Alternative roll-off shapes are possible, but the fits are significantly worse when the best fit is ~outside of the shaded area. E_{cm}^{3} is best, but the experiment is most sensitive to the roll-off region,

<u>Complete space and momentum</u> distributions 0.8(a) What we 0.6 nferred measure a 0.4 spatial (momentum distributions distributions)

1.5

inferred peak momentum distributions

0.2

0

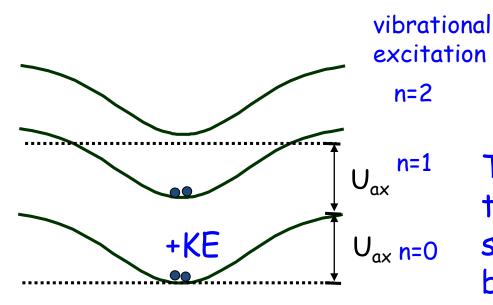
0

0.5

 $p/2\hbar k^1$

inferred peak amplitude distributions

Heating in a 2D optical lattice



Transverse excitations due to dipole fluctuations and spontaneous emission can be calculated a priori.

axial direction

We treat the axial motion semi-classically, and Monte-Carlo simulate how all heating processes ultimately deposit their energy.

Benchmark the heating at low density. Any additional evolution at high density is due to densitydependent processes.

<u>The Classical KAM</u> <u>theorem</u>

Kolomogorov, Arnold and Moser (1954-1963)

If a non-integrable classical system is sufficiently close to integrable, it will not ergodically sample phase space.

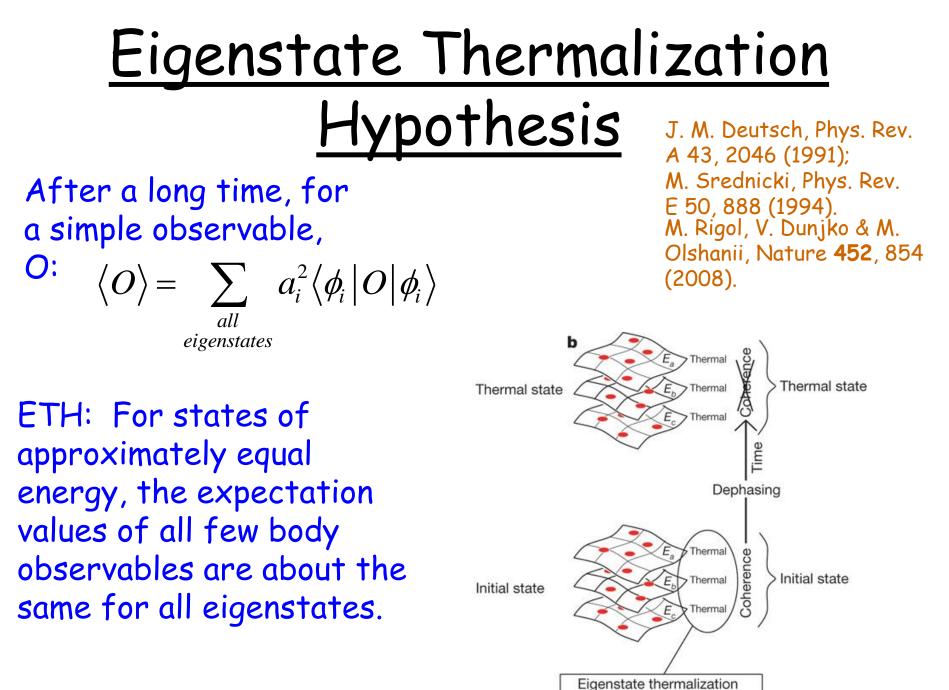
Sufficiently large non-integrability

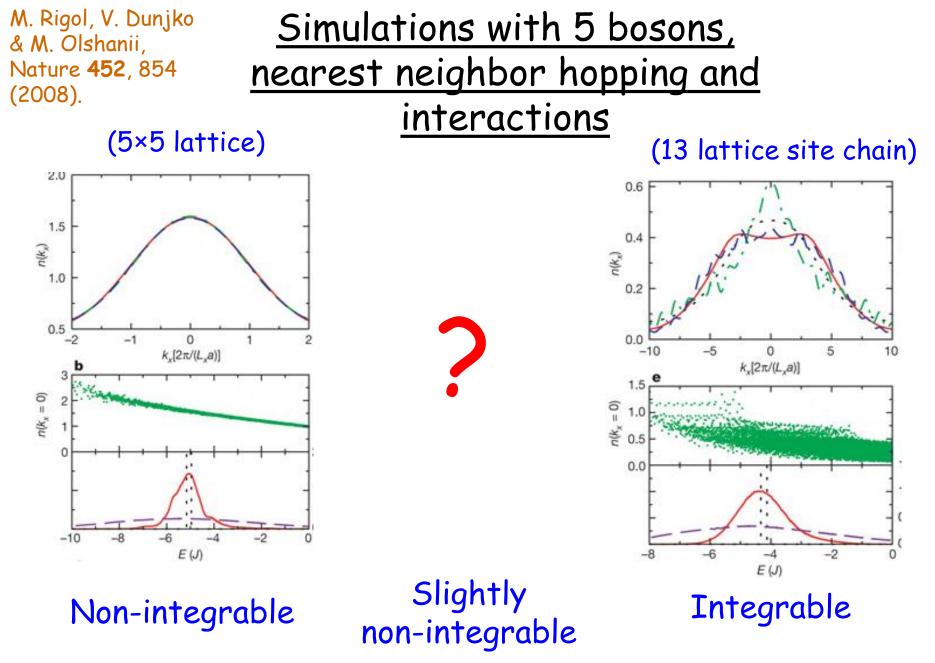
 Chaos, ergodicity,
microcanonical distributions

<u>How can an isolated quantum system</u> <u>thermalize at all?</u>

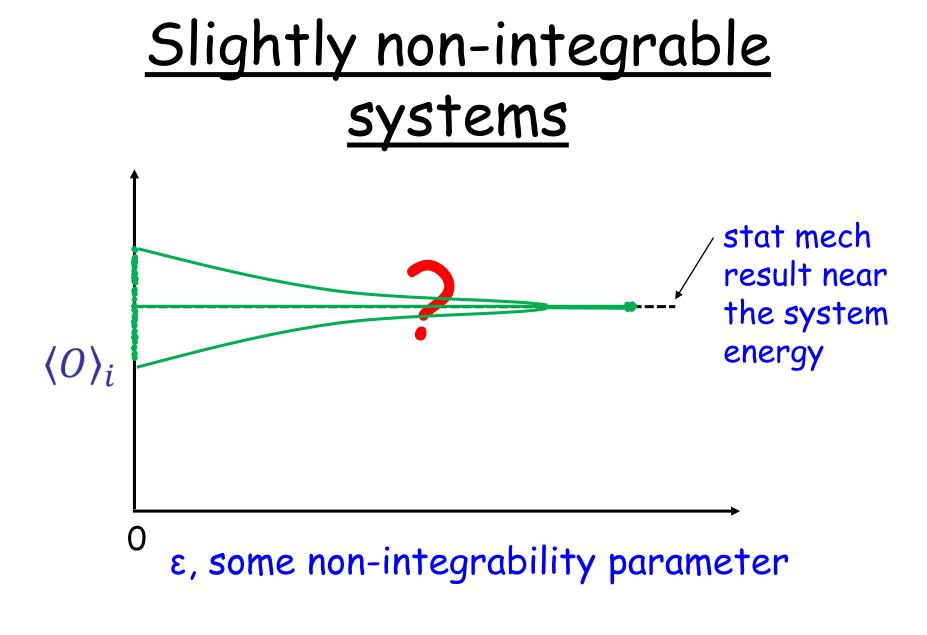
$$\Psi = \sum_{i} a_i \phi_i e^{-i\omega_i t}$$

all eigenstates

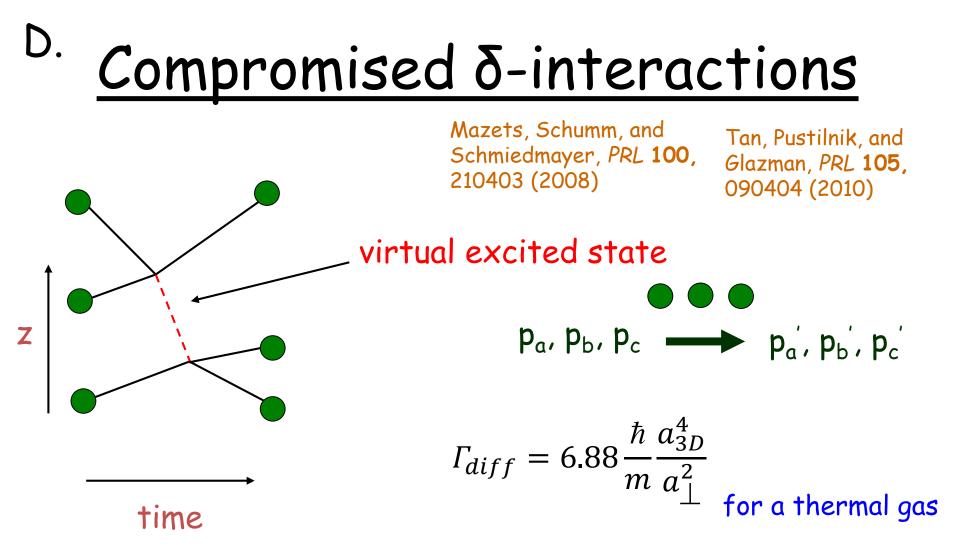




M. Rigol, PRL **103**, 100403 (2009).



An ETH-based answer gives the answer at infinite time.



We want to measure the diffraction collision rate and compare it to this theoretical prediction.

"heating" from all mechanisms, 3-body loss, evaporative cooling

"Heating" Mechanisms

- 1. Lattice dipole fluctuations
- 2. Lattice jiggling T. Savard, K. O'Hara, and J. Thomas, PRA 56, R1095 (1997)
- 3. Spontaneous emission
 - axial

- transverse

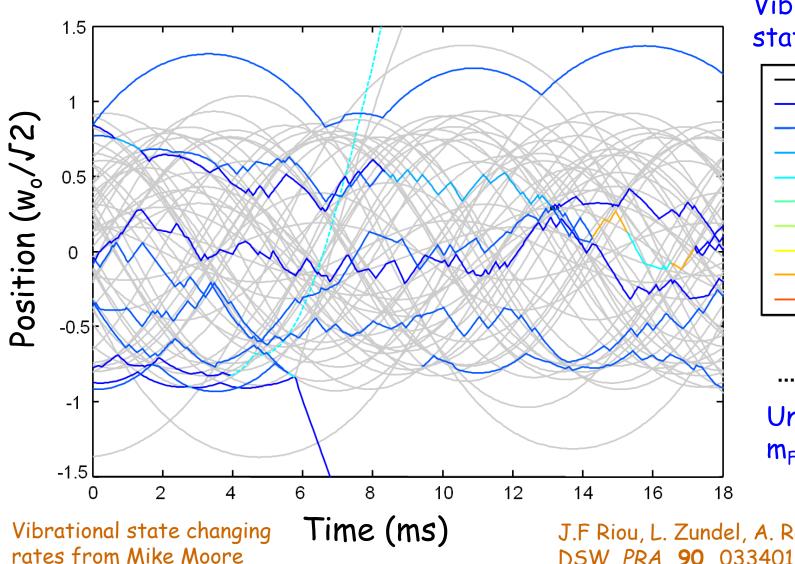
J.F Riou, A. Reinhard, L. Zundel, DSW, PRA 86, 033412 (2012)

- m_F-changing
- spontaneous Raman scattering in optical fibers
- 4. Lattice intensity noise
- 5. Atom loss
- 6. Axial trap intensity noise
- 7. Axial trap position noise
 - Crossed dipole pointing
 - B-field gradient fluctuations

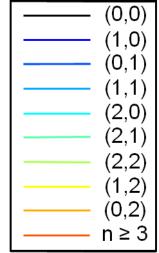
How much energy is deposited?

How is the energy deposited?

Monte Carlo

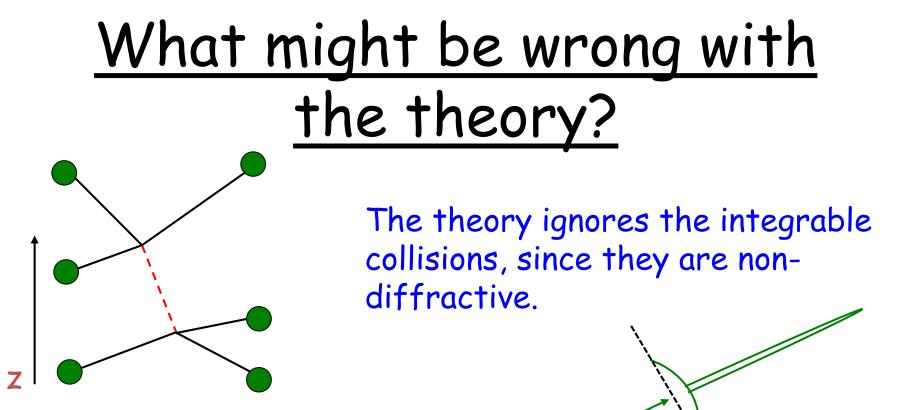


Vibrational states



Untrapped m_F states

J.F Riou, L. Zundel, A. Reinhard, DSW, PRA 90, 033401 (2014)



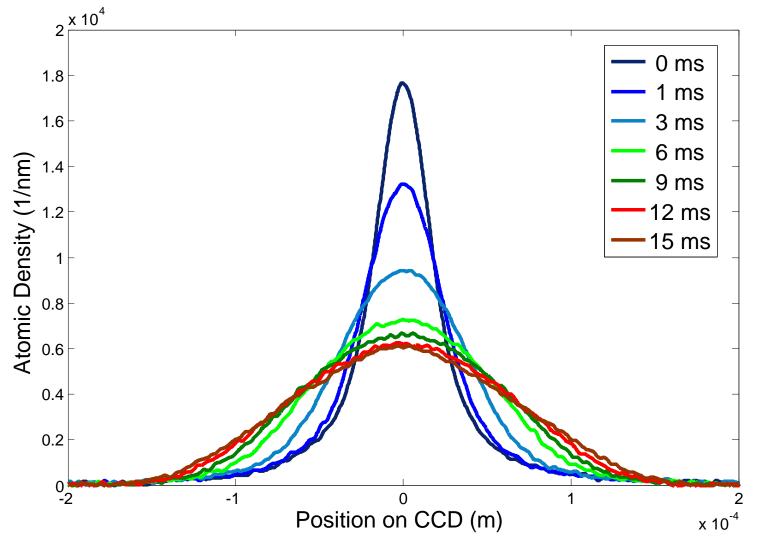
Perhaps they constructively interfere with the nondiffractive part of the diffractive output. By unitarity, the momentum-changing outputs would be suppressed.

A violation of Fermi's golden rule?

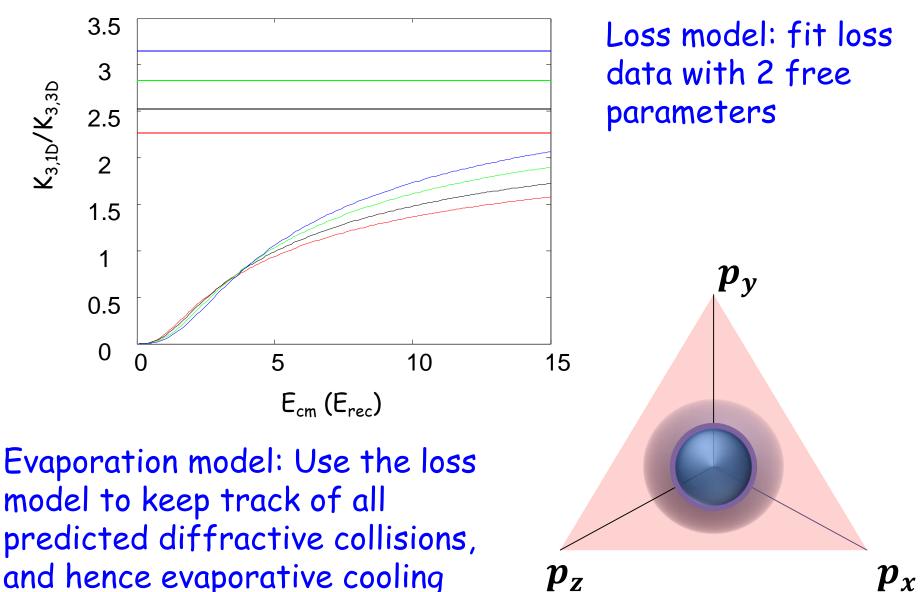
time

Dynamical Fermionization (new)

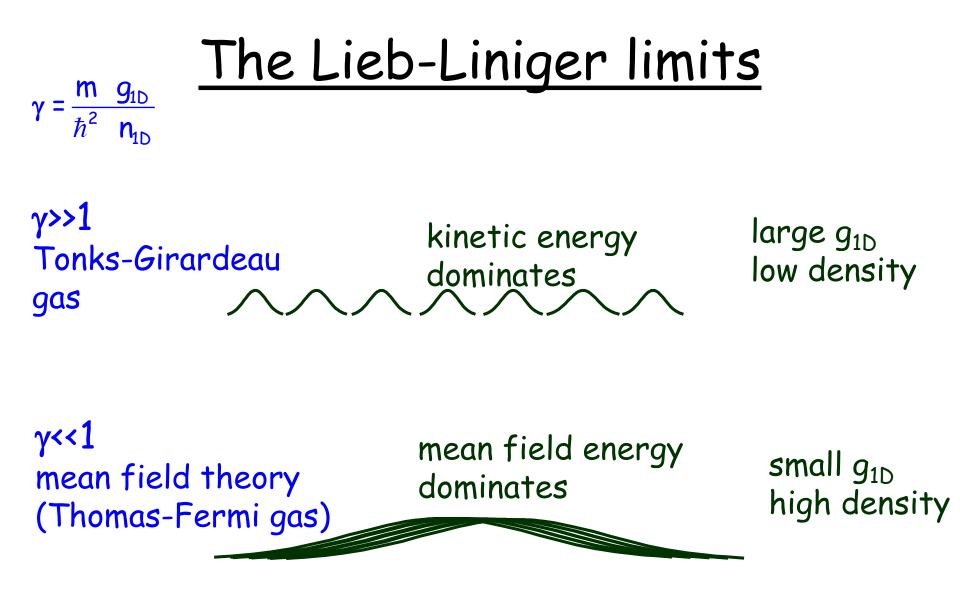
with Marcos Rigol



<u>COM Energy-dependent collisions</u>



 p_z



1D energy parameterized by γ

