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Our motivation
Generically, many-body systems thermalize: they approach a 
most probable (highest entropy) state

Observable

the stat mech answer

time
depends only on bath 
temperature (canonical) or 
total energy (microcanonical). integrable systems are an 

exception: there are extra 
conserved quantities

Are they mathematical 
singular points, or are 
they the center of a 
region where stat mech 
does not apply?

When does the premise of stat mech hold? 



Outline: 1D 3-body recombination

A. Experiments with ground state 1D Bose gases: the Lieb-
Liniger model and integrable many-body systems

B. Out-of-equilibrium 1D gases: Quantum Newton’s Cradles 
(QNCs)

C. Measurement of 3-body recombination in 1D

D. Modeling 3-body loss to determine K3(Ecm).   

Keep track of all 3-body recombination collisions.

Compare the experiment to theory.



Optical Lattices
Calculable, versatile atom traps

1D:
2D:

UAC  IntensityFar from resonance,
no light scattering

3D:

quantum computing

electron 
electric dipole 
moment search

1D Bose gases

(Maxwell demon 
for >50 atoms)



Experimental 1D gases

For 1D:all energies < ħω;
negligible tunneling

0-400 atoms/tube
~1,000-8000 tubes



1D Bose gases with variable point-like 
interactions
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Elliot Lieb and Werner Liniger, 1963: Exact solutions for 
1D Bose gases with arbitrary (z) interactions

A Bethe ansatz approach 
yields solutions 
parameterized by 

Lieb & Liniger, Phys Rev 130 1605 (1963)

L-L is integrable  many extra constants of motion. 
Wavefunctions and all local properties are exactly calculable.

Maxim Olshanii, 1998: Adaptation to real atoms
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Eg., Normalized Local Pair Correlations

g2 of the 
3D BEC is 
1.

Expt: Kinoshita, Wenger, DSW, PRL 95 190406 (2005)

By photo-association
Theory: Gangardt & Shlyapnikov, PRL 90 010401 
(2003)

Pauli exclusion 
for bosons
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Collisions in 1D

For identical particles, reflection looks just like transmission !

Two-body collisions between 
distinct bosons cannot change 
their momentum distribution.



1D Bose gases with δ-fn interactions 
are integrable systems. pa, pb, pc pa, pb, pc

(no “diffractive” collisions)
 they do not:  ergodically sample 
phase space ≈ become chaotic

≈ thermalize

Imperfect δ-fn interactions lift integrability. Do 1D 
gases then eventually thermalize?



Approach to studying 
thermalization

• Density-independent heating: 
mostly spontaneous emission 
from lattice light

• Heating from 3-body loss

• Diffractive 3-body collisions: 
evaporative cooling

J.F Riou, A. Reinhard, L. Zundel, 
D.S. Weiss, PRA 86, 033412 
(2012)

Processes that drive 
momentum evolution in 1D

Take the system out of equilibrium and follow time 
evolution of the momentum distribution.

isolated effect of 3-body 
elastic collisions

L.A. Zundel, J.M. Wilson, N. 
Malvania, L. Xia, J.F Riou, D.S. 
Weiss, PRL 122, 013402 (2019)



Creating Non-Equlibrium
Distributions

2 standing 
wave pulses

Wang, et al., PRL 94, 090405 (2005)
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Quantum Newton’s Cradles

15

30

195 ms

390 ms

1st cycle average

-500 5000
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Kinoshita, Wenger, DSW, 
Nature 440, 900 (2006)



Steady-state Momentum 
Distributions
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Position

Evolution 
without 
grating 
pulses

1st cycle average
15  distribution
40  distribution
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Project 
the 
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After dephasing 
(prethermalization), the  
1D gases reach a steady 
state that is not thermal 
equilibrium

Each atom continues to 
oscillate with the  
amplitude it has after 
dephasing

Lower limit: thousands 
of 2-body collisions 
without thermalization
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Lattice depth: 63 Er



What happens to the 
QNC in 3D?

Thermalization is known to occur in ~3 collisions.

0  2  4  9 



Enforced 1D dynamics

Uax

Uax

axial direction

n=0

n=1

n=2

transverse 
vibrational 
excitation

Ground band atoms 
never have enough 
energy to pairwise 
collisionally excite to 
higher bands.

Excitation to higher 
bands leads to loss 
and/or “heating”.

The blue-detuning of the 2D lattice is critical.

We have a higher density, reduced noise, improved 
momentum measurements compared to our original QNC.
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Distribution of peak momenta

The momentum amplitude, 𝑝𝑜, 
is the conserved quantity. 
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(half) the momentum 
distribution, measured by TOF

The QNC has enough energy 
that the axial motion is 
~semi-classical


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100 ms

5000 ms

Experiment

Deconvolve
from p to p0, 
the peak 
momentum


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High density evolution
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There is 
extra 3-
body loss



3-body recombination
Esry, Greene, Burke, 
PRL 83, 1751 (1999)



In 3D at low energy, the loss coefficient,K3, 
is energy independent.



Suppression of 3-body 
recombination in 1D

Two reasons for suppression

Reduced g3(0) due to increased correlations
Laburthe Tolra et al. 
PRL 92, 190401 (2004)

Haller et al. PRL 
107, 230404 (2011)

Applies to a gas in 
thermal 
equilibriuim

Threshold scattering for isolated 3-body collisions

Related to Efimov physicsMehta, Esry, Greene 
PRA 76, 022711 (2007)



Varying the Axial Energy

Vary U over a factor 
of 5 

Choose Ufinal to ensure 
1D for each of 4 
different lattice 
depths



Simple fit of 3-body loss

𝑑𝑁

𝑑𝑡
= −𝐾1𝑁 − 𝐾3𝑒𝑓𝑓

1𝐷 න𝑛1𝐷
3 𝑑𝑧

To compare the 3-body loss for all data sets 
in one figure, we fit loss data to:



The loss depends on the average 
energy L.A. Zundel, J.M. Wilson, N. 

Malvania, L. Xia, J.F Riou, D.S. 
Weiss, PRL 122, 013402 (2019)

More energetic ensembles of atoms have a higher 𝐾3𝑒𝑓𝑓1D

In 3D, this curve would be a horizontal line.

Two different initial 
densities, 4 different 
lattice depths, ~7 
different initial 
average energies



Adapting a strictly 1D theory 
Mehta, Esry, Greene PRA 76, 
022711 (2007)

𝐾3
1𝐷 ∝ 𝑘𝑎1𝐷

6 𝑎1𝐷 = −
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2
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1𝐷 ∝ 𝐸𝑐𝑚

3 𝑎⊥
12

Olshanii, PRL 81, 938 (1998)

Bound 𝐾3
1𝐷 by the 

thermal value of 𝐾3
3𝐷:

Strictly 1D theory Quasi-1D theory

𝐾3𝑚𝑎𝑥

1𝐷 =
6𝐾3

3𝐷

3𝜋2𝑎⊥
4

Introduce 𝐸𝑙 to characterize crossover between 1D and 3D.
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Calculating the Loss

Loss within each Δ𝑧 is given by:

𝑑𝑁

𝑑𝑡
= −𝐾1𝑁 −

𝑁3 ෍

𝑝𝑜𝑖=𝑝𝑜1

𝑝𝑜𝑓

෍
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෍
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𝐸𝑐𝑚
3 = 𝑝1𝑐𝑜𝑚

2 + 𝑝2𝑐𝑜𝑚
2 + 𝑝3𝑐𝑜𝑚

2 3Keep track of all 3-body collisions



Fitting the Loss
48 decay curves

Do a global fit of all the 
data.

We the take each of the 48 
global fit decay curves and 
do a least squares fit to find 
𝐾3𝑒𝑓𝑓 for that curve (as we 
did for the experimental 
decay curves).

Free parameters:
• C’
• El

𝑑𝑁

𝑑𝑡
= −𝐾1𝑁 − 𝐾3𝑒𝑓𝑓

1𝐷 න𝑛1𝐷
3 𝑑𝑧

Eg.



All the data with all the theory



The results of the fit
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Much of the loss occurs in 
this rollover region.

Ecm > 20ER is needed for 
any transverse excitation.

The system is 1D until the 
inelastic process occurs.

K3
1D rolls over to K3

3D , 
which dramatically reduces 
the dependence of loss on 
lattice depth.



K3
1D(Ecm) or g3(0)?

K3
1D  Ecm

3 K3
1D  g3(0) K3

3D

Isolated 3-body collisions Correlated gas

They can’t simultaneously apply.

Two views of the same underlying physics?



 1D Bose gas experiments are close enough to 
integrable systems that it is possible to keep 
track of all three body collisions.

 We have seen the predicted strong 
dependence of 3-body recombination on 
collision energy.

Summary

With regard to thermalization near integrability, we see the 
onset at a rate that suggests stat mech holds.

The results fit a model 
with two free parameters.

More theory is needed.





Robustness of the model

Alternative roll-off shapes are possible, but the fits 
are significantly worse when the best fit is ~outside of 
the shaded area. Ecm

3 is best, but the experiment is 
most sensitive to the roll-off region,



Complete space and momentum 
distributions 

What we 
measure 
(momentum 
distributions)

inferred peak 
momentum 
distributions

inferred 
spatial 
distributions

inferred 
peak 
amplitude 
distributions







Heating in a 2D optical lattice

Uax

Uax

axial direction

n=0

n=1

n=2

vibrational 
excitation

+KE

Transverse excitations due 
to dipole fluctuations and 
spontaneous emission can 
be calculated a priori. 

We treat the axial motion semi-classically, and 
Monte-Carlo simulate how all heating processes 
ultimately deposit their energy.

Benchmark the heating at low density.
Any additional evolution at high density is due to density-
dependent processes.



The Classical KAM 
theorem

If a non-integrable classical system is sufficiently close to 
integrable, it will not ergodically sample phase space. 

Kolomogorov, Arnold and Moser (1954-1963)

Chaos, ergodicity, 
microcanonical 
distributions

Sufficiently large non-integrability

How can an isolated quantum system 
thermalize at all?
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Eigenstate Thermalization 
Hypothesis J. M. Deutsch, Phys. Rev. 

A 43, 2046 (1991);
M. Srednicki, Phys. Rev. 
E 50, 888 (1994).
M. Rigol, V. Dunjko & M. 
Olshanii, Nature 452, 854 
(2008).

ETH:  For states of 
approximately equal 
energy, the expectation 
values of all few body 
observables are about the 
same for all eigenstates.

2

i i i

all
eigenstates

O a O  

After a long time, for 
a simple observable, 
O:



Non-integrable

?

Slightly 
non-integrable

M. Rigol, V. Dunjko 
& M. Olshanii, 
Nature 452, 854 
(2008).

M. Rigol, PRL 103, 100403 
(2009).

Simulations with 5 bosons, 
nearest neighbor hopping and 

interactions
(5×5 lattice)

Integrable

(13 lattice site chain)



Slightly non-integrable 
systems

ε, some non-integrability parameter

stat mech
result near 
the system 
energy

?

0

An ETH-based answer gives the answer at infinite time. 



Compromised δ-interactions

time

virtual excited state

We want to measure the diffraction collision rate and 
compare it to this theoretical prediction.

Mazets, Schumm, and 
Schmiedmayer, PRL 100, 
210403 (2008)

Tan, Pustilnik, and 
Glazman, PRL 105, 
090404 (2010)

pa, pb, pc pa
’, pb

’, pc
’z

D.

“heating” from all mechanisms, 3-body loss, evaporative cooling

𝛤𝑑𝑖𝑓𝑓 = 6.88


𝑚

𝑎3𝐷
4

𝑎
2

for a thermal gas



“Heating” Mechanisms
1. Lattice dipole fluctuations

2. Lattice jiggling

3. Spontaneous emission

- axial

- transverse

- mF-changing

- spontaneous Raman scattering in optical fibers

4. Lattice intensity noise

How much energy is deposited?

How is the energy deposited?

5. Atom loss

6. Axial trap intensity noise

7. Axial trap position noise

- Crossed dipole pointing

- B-field gradient fluctuations

T. Savard, K. O’Hara, and J. Thomas, PRA 56, R1095 (1997)

J.F Riou, A. Reinhard, L. Zundel, DSW, PRA 86, 033412 (2012)



Monte Carlo
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Vibrational 
states

Untrapped 
mF states

J.F Riou, L. Zundel, A. Reinhard, 
DSW, PRA 90, 033401 (2014)

Vibrational state changing 
rates from Mike Moore



What might be wrong with 
the theory?

z

time

The theory ignores the integrable 
collisions, since they are non-
diffractive. 

Perhaps they constructively interfere with the non-
diffractive part of the diffractive output. By unitarity, the 
momentum-changing outputs would be suppressed.

A violation of Fermi’s golden rule? 



Dynamical Fermionization (new)
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COM Energy-dependent collisions

0 5 10 150

0.5

1

1.5

2

2.5

3

3.5

K
3

,1
D
/K

3
,3

D

Ecm (Erec)

Loss model: fit loss 
data with 2 free 
parameters

𝒑𝒚
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Evaporation model: Use the loss 
model to keep track of all 
predicted diffractive collisions, 
and hence evaporative cooling



The Lieb-Liniger limits

>>1
Tonks-Girardeau
gas

<<1
mean field theory                 
(Thomas-Fermi gas)

large g1D

low density

small g1D

high density

kinetic energy 
dominates 

mean field energy 
dominates 

 1D
2

1D

m g
=

n



1D energy parameterized by 

Tonks-
Girardeau 

gas

1D 
quasi-
BEC
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Kinoshita, Wenger, 
DSW, Science 305,
1125 (2004)

Exact theory:
Expt:

weak 
coupling

strong 
coupling

no free 
parameters

Lieb & Liniger, PR 130, 
1605 (1963); Dunjko, 
Lorent, Olshanii, PRL 86, 
5413 (2001) 


