

2022/05/29

Status of nEXO & LEGEND

Erica Caden, (she/her) SNOLAB Research Scientist

Many thanks to Giorgio Gratta and Ryan Martin for slides!

Isotopic enrichment of the source material (that is generally also 1) the detector)

- Isotopic enrichment of the source material (that is generally also 1) the detector)
- Underground location to shield cosmic-ray induced background 2)

- Isotopic enrichment of the source material (that is generally also 1) the detector)
- Underground location to shield cosmic-ray induced background 2)
- Ultra-low radioactive contamination for detector construction 3) components

- Isotopic enrichment of the source material (that is generally also 1) the detector)
- Underground location to shield cosmic-ray induced background 2)
- Ultra-low radioactive contamination for detector construction 3) components
- New techniques to discriminate signal from background 4)

- Isotopic enrichment of the source material (that is generally also 1) the detector)
- Underground location to shield cosmic-ray induced background 2)
- Ultra-low radioactive contamination for detector construction 3) components
- New techniques to discriminate signal from background 4)

The next step: ton-scale detectors entirely covering the inverted hierarchy

Testing lepton number violation with 100x the current sensitivity

A healthy neutrinoless double-beta decay program requires more than one isotope.

- Nuclear matrix elements are not very well known and any given isotope could come with unknown liabilities
- Different isotopes correspond to vastly different experimental techniques
- 2 neutrino background is different for various isotopes
- Understanding the mechanism producing the decay requires the analysis of more than one isotope

9 Countries, 33 institutions, ~200 collaborators

49 institutions, about 250 scientists

Germanium for 0vßß searches

- ⁷⁶Ge is a candidate isotope for $0v\beta\beta$ -decay with a Qvalue of 2039 keV.
- HPGe detectors are a well-established technology that is intrinsically low background (high purity germanium).
- Germanium detectors can be made from material enriched to >90% in 76 Ge (natural abundance ~ 7%).
- Excellent energy resolution (0.1% FWHM at Q-value).
- Novel detector technologies allow for efficient background rejection through pulse shape discrimination.

900g R&D HPGE Point Contact detector

MAJORANA Demonstrator & GERDA exp'ts

Majorana Demonstrator at SURF (USA):

- Two compact vacuum cryostats + shielding (Cu/Pb)
- 29kg enriched detectors, 15kg natural abundance
- Custom Low Mass Front End electronics
- Extensive use of underground electroformed copper

• Best energy resolution of any $0\nu\beta\beta$ experiment

GERDA at LNGS (EU):

- Detectors deployed in liquid argon as scintillating veto
- 35kg of enriched detectors (coax + BEGe)
- Complete background modelling over large energy range
- Lowest background index of any 0v $\beta\beta$ experiment

The LEGEND program

- LEGEND: Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay
- Originally formed by members of the MAJORANA and GERDA collaborations
- Goal: 3 σ detection of a 0v $\beta\beta$ signal in ^{76}Ge for half-lives of 10^{28} years
- Method:
 - Phased approach to retire technological risks
 - Re-use of demonstrated technologies from the MAJORANA DEMONSTRATOR and GERDA experiments:
 - Electroformed copper, Low mass front-end electronics, Immersion in liquid argon
 - Develop new technologies:
 - ICPC detectors, Scintillating structural materials, Electronics
- Program:
 - LEGEND-200 experiment to deploy 200 kg of enriched detectors and make use of the existing GERDA infrastructure at LNGS
 - LEGEND-1000 proposed for 1000 kg of enriched detectors (baseline at SNOLAB)

Marginalized posterior for $m_{\theta\theta}$ versus lightest neutrino mass using 3σ range for oscillation parameters (Agostini et. al, PRD **96** 053001 2017)

LEGEND-200

- LEGEND-200 target is to explore half-lives of **10²⁷ years** with 5 years of data taking using 200kg of enriched Ge detectors
- Reuse 70kg of enriched detectors from GERDA and MJD + 130 kg of new material
- Required reduction in background level by a factor of 2.5 compared to GERDA achieved through:
 - Use of MJD low mass front-end electronics
 - Use of electroformed copper near detectors
 - More efficient readout of scintillation light
 - Larger mass ICPC detectors
- LEGEND-200 an ideal test bench for technologies aimed at LEGEND-1000
- Status:
 - Currently commissioning (185kg acquired), cryostat filled, lock-system lacksquareupgraded, started commissioning of first detectors.
 - Expect background index measurements and first physics runs to start mid 2022

LEGEND-1000

- LEGEND-1000 target is to explore half-lives of **10**²⁸ years ($m_{\beta\beta} = 10-20 \text{ meV}$) with 10 years of data taking using 1000 kg of enriched Ge detectors
- Baseline design at SNOLAB using large cryostat with 4 reentrant tubes
- Requires reduction in background by 20x compared to LEGEND-200:
 - Larger volume/surface ratio of detectors
 - Low mass ASIC electronics
 - Low background liquid argon
 - Deeper underground
- For more information: LEGEND Pre-conceptual report:

https://arxiv.org/abs/2107.11462

LEGEND Technology – ICPC Detectors

- Inverted Coaxial Point Contact detectors:
 - The semi-coaxial "well" allows for larger mass detectors that will still deplete with a "reasonable" (<5 kV) reverse-bias voltage
 - Detectors with mass larger than 3 kg possible (compare with ~1kg for "standard" PPC). 2.6 kg average mass expected for LEGEND-1000.
 - Larger detectors \rightarrow
 - Less detectors \rightarrow
 - Less radioactive components near detectors
 - Larger volume/passivated surface \rightarrow
 - 10 Less surface backgrounds from alpha. radiation

Drift paths in an ICPC, NIM **665** *p.*25 (2011)

[mm] 8

50

40

30

ICPC in low-background LEGEND mount

MJD-style Point Contact, BEGE, and ICPC detectors compared for typical size

LEGEND-1000 backgrounds & projections

Main backgrounds in LEGEND:

- U/Th decay chains: Gamma rays from the chain can deposit energy above the Q-value. *Reduced by using larger detectors* with fewer smaller and cleaner readout components.
- ⁴²K decays: *Reduced by using underground LAr*
- Alpha decays on detector surfaces: Reduced by a factor ~4
- compared to GERDA (larger volume/surface for ICPC detectors) (Is Cosmogenically produced isotopes in Ge: Will be • Cosmogenically produced isotopes in Ge: Will be comparable or slightly increased if detectors have less cooldown time (68Ge has 271d half-life)
- For more information: LEGEND Pre-conceptual report: https://arxiv.org/abs/2107.11462

LEGEND sensitivity

⁷⁶Ge (92% enr.)

- Current background projections put LEGEND-1000 on the red line
- Left: 90% sensitivity (to exclude half-lives)

⁷⁶Ge (92% enr.)

• Right: 3-sigma detection sensitivity (50% chance of detecting a signal with 3σ significance)

Liquid Xe TPCs

- Liquid Xe is Source and Detection Medium
- Monolithic detector structure -> excellent background rejection
- Cryogenic electronics in LXe
- Active self-shielding
- Detection of scintillation light and secondary charges
 - Good energy resolution
 - Particle ID
 - Event Topology

The nEXO TPC

- Next generation 0vββ detector
- 5 t liquid Xenon TPC, 28x EXO-200 volume
- SiPM for 175nm scintillation light detection, ~4.5 m² array in LXe
- Tiles for charge read out in LXe
- In-cold electronics inside TPC in liquid Xe
- 3D event reconstruction

High Voltage Field Cage

nEXO Layout

nEXO Layout

Combining Ionization & Scintillation

Anti-correlation between scintillation and ionization in LXe known since early EXO R&D (E.Conti et al. Phys Rev B 68 (2003) 054201)

nEXO will have a resolution <1% at the Q-value (2458 keV).

The ratio of scintillation to ionization entirely removes a backgrounds.

nEXO is the best option for a very large detector

The homogeneous detector with advanced topological reconstruction has a proven track record for γ background identification and rejection.

Multi-parameter analysis also makes the measurement robust even for currently unknown backgrounds.

nEXO is well optimized

Standard nEXO slides -- May2022

Prepared by Giorgio Gratta

Sensitivity and Discovery Potential

Physics reach in terms of effective Majorana mass. This is also useful to compare different experiments. SNotAB

 $\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{\langle m_{\beta\beta} \rangle^2}{m_{\gamma}^2} G^{0\nu} g_A^4 |M^{0\nu}|^2$

Phase space factor J. Kotila and F. Iachello, *Phys Rev C 85, 034316 (2012)* Axial coupling, $g_A = 1.27$

- ¹³⁶Xe benefits from larger G⁰^v than lighter isotopes (G⁰^v is known precisely)
- Significant theoretical uncertainty in NMEs Adopt agnostic approach considering all published NMEs not directly superseded by later publications • Conclusions not qualitatively changed if *all* published NMEs are considered

Allowed parameter space and nEXO exclusion sensitivity (90% CL):

Summary

- A solid international 0vββ program explores at least two different isotopes.
- LEGEND-1000 and nEXO are nextgeneration experiments with competitive sensitivities looking for 0vββ in Germanium-76 and Xenon-136.
- Both have established technologies with new features being developed.
- Both are looking to be sited in the SNOLAB Cryopit.

LEGEND Overview and Status

- 28-29 May 2022.
- Will be integrated into a 20min presentation of nEXO+LEGEND https://indico.cern.ch/event/1077282/

Prepared by R. Martin (Queen's U.) to be given by E. Caden (SNOLAB) during IPP (Institute of Particle Physics) 50th anniversary symposium,

LEGEND Technology – Liquid argon

- GERDA pioneered the use of liquid argon as:
 - Cooling medium
 - Shielding
 - Active veto
- ⁴²Ar is a background of concern (the subsequent decay of ⁴²K has a Qvalue of 3.5 MeV)
- Reduction in ⁴²Ar by procuring "Underground Liquid Argon", UGLAr
- ⁴²Ar is cosmogenically produced, much like ³⁹Ar which is of interest to the dark matter community
- DarkSide-20k is developing a plant to extract underground argon from Colorado and purify it in Italy, at 90 tonnes/year \rightarrow after 1 year (~2025), can easily produce ~20 tonnes required for L-1000 (to fill the re-entrant tubes)
- Reduction of order 1400x for ³⁹Ar

The blue line is the 2nbb rate assumed from detector mass, it's not a fit!

LEGEND Technology – ASIC electronics

Application Specific Integrated Circuits:

- Low-mass electronics, a whole CSP in a cubic mm!
- Collaboration has tested the CUBE ASIC fabricated lacksquareby XGLab
- Collaboration developing the L1K ASIC specifically for L-1000 to be tailored to the ICPC detectors
- Integrate ASIC directly onto low-background flex cable and wire-bond to the detectors
- Initial testing indicates excellent performance with ASICs (noise, energy resolution, pulse shape discrimination)

P.Barton et. al., NIMA 812 p.17 (2016)

Example of CUBE ASIC mounted on PC detector

Kapton flex-caple designed to hold ASIC

Searching for Ovßß in ¹³⁶Xe with liquid Xe TPC

EXO-200:

- EXO-200 First 100-kg class ββ experiment
- 175 kg liquid-Xe TPC with ~80% ¹³⁶Xe
- WIPP Mine in NM, USA
- Decommissioned in Dec 2018
- End-of-run Calibration campaign informs nEXO Design

nEXO:

- Next-generation liquid-Xe TPC
- 5-tonne enriched in ¹³⁶Xe at ~90%
- Designed to go beyond $T_{1/2} \sim 10^{28}$ years
- Preferred location: SNOLAB Cryopit
- Design of detector and components are advanced
- DOE Decision on funding 0vββ projects anticipated this year

Physics reach in terms of effective Majorana mass. This is also useful to compare different experiments. SNotAB

 $\left(T_{1/2}^{0\nu}\right)^{-1} = \frac{\langle m_{\beta\beta} \rangle^2}{m_s^2} G^{0\nu} g_A^4 |M^{0\nu}|^2$

Text

Phase space factor J. Kotila and F. Iachello, Phys Rev C 85, 034316 (2012) Axial coupling, $g_A = 1.27$

• ¹³⁶Xe benefits from larger $G^{0\nu}$ than lighter isotopes $(G^{0\nu}$ is known precisely)

• Significant theoretical uncertainty in NMEs Adopt agnostic approach considering all published NMEs not directly superseded by later publications • Conclusions not qualitatively changed if *all* published NMEs are considered

The nEXO detector is an evolution from EXO-200

EXO-200:	nEXO:	Improvements:
Thin-walled commercia Cu w/HFE	Thin-walled electroformed Cu w/HFE	Lower background
Max voltage: 25 kV (end- of-run)	<i>Operating voltage:</i> 50 kV	Full scale parts tested in LXe prior to installatio minimize risk
Cu clad polyimide analog)	Cu clad polyimide (digital)	Same cable/feedthrough technology, R&D ider 10x lower bkg substrate and demonstrated dig signal transmission
8-5 ms	5 ms (req.), 10 ms (goal)	Minimal plastics (no PTFE reflector), lower surf volume ratio, detailed materials screening prog
Crossed wires	Gridless modular tiles	R&D performed to demonstrate charge collect with tiles in LXe, detailed simulation developed
APDs + PTFE reflector	SiPMs around TPC barrel	SiPMs avoid readout noise, R&D demonstrated prototypes from two vendors
2%	1.2% (req.), 0.8% (goal)	Improved resolution due to SiPMs (negligible r noise in light channels)
Conventional room emp.	In LXe ASIC-based design	Minimize readout noise for light and charge ch nEXO prototypes demonstrated in R&D and fol from LAr TPC lineage
Aeasurement of all naterials	Measurement of all materials	RBC program follows successful strategy demonstrated in EXO-200
2 atten. length at enter	>7 atten. length at center	Exponential attenuation of external gammas a more fully contained Comptons

At the core of the TPC are Light and Charge collection devices

.

