

Measurement of a Lepton-Lepton Electroweak Reaction

Dr. Juliette Mammei

Fondation canadienne pour l'innovation

Measuring the electroweak couplings

The parity-violating part of the Standard Model Lagrangian is

nucleon target

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} \left[\overline{e} \gamma^{\mu} \gamma_5 e \left(C_{1u} \overline{u} \gamma_{\mu} u + C_{1d} \overline{d} \gamma_{\mu} d \right) + \overline{e} \gamma^{\mu} e \left(C_{2u} \overline{u} \gamma_{\mu} \gamma_5 u + C_{2d} d \gamma_{\mu} \gamma_5 d \right) + \overline{C_{ee} \overline{e} \gamma^{\mu} \gamma_5 e (\overline{e} \gamma_{\mu} e)} \right]$$
EM coupling: $e \gamma^{\mu}$ (not parity violating)
The charged current $\frac{g}{2\sqrt{2}} \gamma^{\mu} (1 - \gamma^5)$
violates parity maximally: $\frac{g}{2\sqrt{2}} \gamma^{\mu} (1 - \gamma^5)$
The neutral current coefficients need to
be determined:
 $\frac{g}{2cos\theta_W} \left(C_V^f \gamma^{\mu} - C_A^f \gamma^{\mu} \gamma^5 \right)$
 $\frac{g}{2cos\theta_W} \left(C_V^f \gamma^{\mu} - C_A^f \gamma^{\mu} \gamma^5 \right)$
 $\frac{g}{2cos\theta_W} \left(C_V^f \gamma^{\mu} - C_A^f \gamma^{\mu} \gamma^5 \right)$
 $\frac{g}{2cos\theta_W} \left(C_V^f \gamma^{\mu} - C_A^f \gamma^{\mu} \gamma^5 \right)$
 $\frac{g}{2cos\theta_W} \left(C_V^f \gamma^{\mu} - C_A^f \gamma^{\mu} \gamma^5 \right)$

A Brief History of PVES Experiments

May 2022

IPP Symposium

Experimental apparatus

Integrating detector array

Tracking detectors

Beam monitors...

Shielding

Target

Spectrometer system

Acceptance defining collimator

Full azimuthal acceptance for mollers from $6 < \theta_{lab} < 20$ mrads $2.75 \le E_{scat} \le 8.25$ GeV $E_{beam} = 11 \ GeV$ $I_{beam} = 65 \ \mu A$ $\mathcal{L} = 3 \times 10^{39} \ cm^{-2} \cdot s^{-1}$ $P_{beam} \ge 90 \pm 0.5 \ \%$ $1.25 \ m \ LH_2 \ target$

rate(GHz/uA/sep/5mm) vs r(mm)

particle envelopes along beamline

IPP Symposium

Main detector array (CFI funded)

Allows for deconvolution of moller asymmetry from elastic and inelastic bkgds

Array of 224 detectors

Back-flush Segment

y(mm)

Red – "open" Blue – closed Green – transition

overlap azimuthally

IPP Symposium

-800

10-6

-600

x(mm)

-700

rate (GHz/sep/uA/(5mm)^2) vs xy(mm^2)

May 2022

Detector prototyping

Precision provides physics reach

 $\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W} \simeq .05 \frac{\delta A_{PV}}{A_{PV}} \implies \delta Q_W^e$ = 2.3%, ~5 × smaller than E158

2.3% MOLLER uncertainty \rightarrow mass reach 7.5 to 27 *TeV*

	95% conf. level	
LEP200	Λ^{ee}_{LL} ~8.3 TeV	
E158	Λ^{ee}_{LL} ~12 TeV	
MOLLER	Λ^{ee}_{LL} ~27 TeV	

MOLLER is accessing discovery space that cannot be reached until the advent of a new lepton collider or neutrino factory

IPP Symposium

Future – couplings and SM Tests

P2

Summary

- MOLLER has about 140 collaborators from the US, Canada, Germany, Italy, France, and Mexico
- Obtained CD0 in 2017, CD1 in 2020
- Detector PDR January 2022
- Spectrometer PDR last Monday

60% design reviews

USD 65M Project (approximate breakdown)

6M NSF (partial In-Kind from here) 4M CFI (\$2.4M CFI, \$1.6M Research MB) 55M DOE (partial In-Kind from here) TRIUMF (and others) support for electronics development

- TDR November 2022 90% design completion
- Planned CD2/3 Review in early 2023
- First physics in 2025

Current Canadian Group

9 faculty from U. Manitoba, U. Winnipeg, U. Memorial, UNBC2 postdocs and 7 students

New U. Manitoba faculty member starts in July!